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ABSTRACT "

Recent experimental studies strongly'suggest that the hairpin V,

vortex plays an important,aid'possibly dominant, role in the dynamics i
of turbulent flows near walls. In this study, various aspects of the

motion of hairpin vortices near solid walls are addressed-on a theo- -.-

retical basis. In particular the following topics are of interest: -

(1) the nature of the evolution of hairpin vortices in a shear flow ;

(2 the type of flow induced near a wall by a convected hairpin

vortex; (3) the character of the viscous response near a wall to the

hairpin vortex motion and (4) the nature of the interaction of two-,

hairpin vortices.

In the first phase of this study, a numerical procedure is

developed to allow the accurate evaluation of the trajectory of a

three-dimensionallvortex for vortices having small cores. The

integration method is based on a numerical approximation to the

Biot-Savart integral; most existing vortex calculation methods have

severe stability problems for vortices with small cores. The-

stability problem s overcome with the present method and the tech-

nique is applied to compute the evolution of convected vortex loops

and hairpin vortices, both in a uniform flow and in a shear flow

above a wall. For the case of-hairpin vortices evolving in a shear

flow, a regenerative process is observed wherein secondary hairpin

vortices form outboard of the original hairpin vortex in a manner

consistent with experimental observations. Calculations for two
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hairpin vortices, which are initially close to one another in a

shear flow ,show that the vortices interact in a manner so-as to

reinforce one another. Simulations are carried out to compute the

evolution of hydrogen bubble lines as a hairpin vortex passes and

thesteshow that such vortices can give rise to wall layer streaks.

In the second phase of this study, the response is computed

for a viscous flow near a wall due to the motion of a hairpin

vortex above the wall. The results reveal that a complex, unsteady

boundary-layer flow develops near the wall which ultimately develops

a very strong local outward growth. The final stages of this

development are expected to lead to a boundary-layer eruption and

the creation of a secondary hairpin vortex by a strong viscous-

inviscid interaction with the outer flow. This mode of regeneration

is believed to be a fundamental process wherein new vorticity from

the wall region is continually introduced into the turbulent bound-

ary layer.
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CHAPTER I

INTRODUCTION A

1.1 Background

Most flows occurring in nature and in engineering application

are turbulent. The atmospheric boundary layer as well as ocean

currents are generally in turbulent motion. The major portion of

boundary layers which form and grow on such devices as turbine blades

and aircraft wings are turbulent. Turbulence is usually present in

most channel and pipe flows as well as in most combustion processes.

The study and prediction of turbulent flow phenomena is thus an

extremely important area of basic research.

Generally turbulence cannot sustain itself without some source

of energy. For incompressible flows, the production of new turbu-

lence is generally observed to be associated with the presence of

shear in the mean flow; the most common location where mean shear

occurs is near solid walls where the flow must be reduced to rela-

tive rest to satisfy the no slip condition. The role of shear in

the production process appears to be important for if turbulence

arrives in an environment where there is no shear (or some other

maintenance mechanism), it decays. Unfortunately, the production

process is not well understood. A common view is that vortex

motions play an important role in the transport of turbulence; the

large scale eddies are thought to extract energy from the mean flow

V5



(see for example Tennekes and Lumley, 1972, p. 41 or Hinze, 1975,

p. 74) and then to transfer energy to smaller scale eddies through

vortex stretching. Ultimately the smaller eddies dissipate energy

into heat through viscous dissipation. Although this statement of

the processes in turbulence is commonly accepted, it does not shed

much light on the complex dynamics that occur in the production

mechanisms near walls.

In recent years, there has been considerable experimental

interest in the structure of turbulent boundary-layer flow near

walls and it has become apparent that such flows are not comprised

of random fluctuations in velocity; rather an ordered (but complex)

cyclic sequence of events appears to take place in the flow near

the wall. This apparently deterministic sequence is usually

referred to as the coherent structure or the coherent behavior of

the wall-layer flow; here the wall layer is understood to imply that

portion of a turbulent flow between the wall and locations where the

mean profile is logarithmic in y, the distance from the wall. There

are two features which are observed to dominate the dynamics of the

wall-layer flow, namely the low speed streaks and the bursting

phenomenon. When a visualization medium, such as dye or hydrogen

bubbles, is introduced into the wall-layer flow it is observed to

collect into low-speed streaks near the wall which are aligned in

the streamwise direction and which persist over relatively long

distances; the streaks are referred to as "low-speed" because the

streamwise velocity near the streaks is generally observed to be

-2-
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less than the velocity distribution corresponding to the mean pro-

file. A schematic sketch of the observed phenomenon is given in

Figure 1.1.

The second important feature of the wall-layer flow is the

bursting process wherein the wall-layer fluid is observed to erupt,

at isolated spanwise and streamwise locations, into the outer region

of the flow. The event is observed to initiate near a wall layer

streak and in its primary stages is characterized by a lifting of

the low-speed streak from the wall; an apparently oscillatory

behavior then starts to develop in the streak and then a violent

chaotic eruption of wall-layer fluid is observed. A schematic

diagram of the various stages of the process, as viewed from the

side and which is adapted from Kline (1978), is shown in Figure

1.2.

The physical cause of the wall-layer streaks and the bursting

phenomenon is not well understood. In this study, the possibility

that the observed effects are due to convected vortex motion will be

considered. In particular the major thrust of this study is an .

investigation of the cause and effect relationships generated by a

convecting hairpin vortex.

1.2 Experimental Studies

It is commonly believed that the vortex motions that are

clearly observable in boundary-layer turbulence, play an important

role in the dynamics of the turbulence and a variety of model vortex

-3-
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Lifted-up of
low-speed streak Eruption

Figure 1.2 -Schematic sketch of wall-layer burst-
ing process when visualized by dye
injection through the wallI.



motions have been suggested. In an early study by Nychas, Hershey

and Brodkey (1973) it was suggested that (what appeared 
to be) large 0

transverse convecting vortices in the outer layer were somehow

associated with the bursting events near the wall. Bakewell and

Lumley (1967) and later Blackwelder (1978) and Blackwelder and

Eckelmann (1979) suggested that long counter-rotating streamwise

vortex pairs are an important feature in the time-dependent flow

near the wall. Falco (1981,1982) has proposed that convected ring-

like vortices are an important dynamical feature of turbulent

boundary layers. Perhaps the most popular vortex model is the hair-

pin vortex which has been proposed as a basic feature of wall-layer

turbulence by Theodorsen (1952), Willmarth and Tu (1967), Kline

-,S et al (1967), Offen and Kline (1973,1975), Smith (1978), Wallace

(1982), Head and Bandyopadhyay (1981), Perry, Lim and Teh (1981),

Perry and Chong (1982), Smith and Metzler (1983) and Acarlar and

Smith (1984, 1987a, 1987b) among others.

In the study by Nychas, Hershey and Brodkey (1973), small

9. solid particles were suspended in a water flow and the particle

Z.? motions were photographed using a high-speed motion-picture camera

which moved in the flow direction. It is difficult to get a clear

three-dmensional picture of the sequence of events with this

approach. Nevertheless, Nychas et al (1973) observed what appeared

6 to be transverse vortices convecting in the outer layer. Such

vortices induced a decelerated flow near the wall followed by a

-6-
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region of acceleration. It was concluded, on the basis of the

visual observations, that ejection events at the wall were closely

associated with the presence of transverse vortices in the outer

flow; the clear suggestion of this work is that the transverse

vortices induce conditions in the wall region that cause an

ejection. A similar mechanism is suggested by the studies of Falco

(1981,1982) and Falco and Wiggert (1980); in these experiments, the

flow structure of the turbulent boundary layer was visualized by

using smoke in air and compact vortex structures, which appeared to

be similar to vortex rings, were observed; the ring-like vortices

were believed to induce eruptions of the wall-layer flow. Detailed

experiments involving vortex rings moving toward a wall by Cerra and

Smith (1982), Walker, Smith, Cerra and Doligalski (1987) and Didden

and Ho (1986) confirm that vortex rings moving toward a wcll do

I. induce eruptive behavior and the production of secondary vortices

through an unsteady separation effect with the boundary layer near

the wall. This mechanism will be discussed in more detail inwall

Section 1.3.

Another picture of the flow near the wall in turbulent

boundary layer has been proposed by Bakewell and Lumley (1967);

these authors examined the near-wall region of a pipe flow and on

the basis of measurements with a hot-film anemometer concluded that

the most energetic velocity fluctuations were associated with pairs

of counter-rotating vortices. Bakewell and Lumley (1967) suggested

-7-
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that the dominant structures in the wall-layer region consist of

randomly distributed counter-rotating vortices which are elongated

in the streamwise direction. A similar model was proposed by

Blackwelder and Eckelmann (1979) who suggested that long streamwise

vortices are present in the wall-layer flow; in this model, the role

of the counter-rotating vortex pairs is to pump low momentum fluid

away from the wall and to lead to the formation of the low-speed

streaks. It was conjectured that the process terminates with the

arrival of a sweep of high speed flow from the outer region which

was supposed to lead to a highly inflectional streamwise profile

near the low-speed streaks. The inflectional velocity profile is

believed to be a highly unstable situation and the bursting event

was considered to be the outcome of the instability. This type of

model is purely kinematical and assumes a great deal about insta-

bility in a time-dependent evolving flow field; apart from these

difficulties, the physical origin of the counter-rotating vortex

pairs was not explained.

A third type of vortex structure that has often been proposed

as a basic feature in turbulent boundary-layer flows is the hairpin

vortex. A variety of terms have been used to describe hairpin

vortices; Head and Bandyopadhyay (1981) have pointed out that

these terminologies really imply the same vortex structure but at

different Reynolds numbers. The classification scheme taken from

their paper is reproduced in Figure l.3,which simply implies that

-8-
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(a) (b) (c)

Figure 1.3 Effect of Reynolds number on eddies
(a) very slow Re (vortex loops);
b) low-moderate Re (horseshoes);
c) moderate-high Re (hairpins).
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at higher Reynolds numbers the vorticity tends to become more tightly

concentrated in smaller and smaller core regions. Head and

Bandyopadhyay (1981) carried out a series of wind tunnel flow

visualization experiments using smoke; their results indicate

that the turbulent boundary layer consists of a "forest" of hairpin

vortices which continually stretch in shear and -ppear to be inclined

at a characteristic angle of 450 to the wall. A similar picture has

also been suggested by Perry and Chong (1982) who conjectured that

the structure of the turbulent boundary layer is dominated by a

systematic heirarchy of hairpin vortices. There are some appealing

features about this conjectured type of structure but the physical

picture appears incomplete. For example, there is no explanation

concerning the processes leading to the production of new vorticity

from the wall region; in addition the notion of a series of hairpin

vortices which continually stretch and intertwine in shear does not

appear to lead to a complete and an entirely satisfactory pattern of

evolution.

Recently, Smith (1984) has proposed a conceptual model of the

physical processes that occur near the wall in a turbulent boundary

layer which was based upon extensive flow visualization experiments

as well as a previous model by Offen and Kline (1975). In the latter

study, it was suggested that lift-up of the low speed streaks (which

appeared to be a precursor of the bursting process) was associated

with the temporary imposition of an adverse pressure gradient on the

-- lO
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wall layer by a convected disturbance. Smith (1984) also adopts

this view and suggests that the effect of the local adverse pressure

gradient is to induce an inflectional behavior in the streamwise

velocity profile near the interface of the streak and the high speed

outer region fluid. The instantaneous inflectional profile is

assumed to be unstable and to give rise to a series of roll-ups into

a number of hairpin vortices. As the hairpin vortices are convected

away from the surface, a strong vortex stretching process in the

streamwise direction cause intensification in the legs of the hair-

pin vortices; thusthe counter-rotating legs of the hairpin vortices

act to reinforce the streak, thus creating an appearance of streak

persistence. The bursting process is suggested to be due to the

breakup of the low-speed streak which is lifted by the counter-

rotating legs of the hairpin; rapid ejection may be due to the

viscous effects induced by the local streamwise adverse pressure

associated with the moving head of the hairpin vortex.

In order to observe the motion of hairpin vortices in a control-

led environment, Acarlar and Smith (1984, 1987a, 1987b) carried out a

series of experiments where hairpin vortices were artifically gener-

ated in a laminar boundary-layer flow on a plane surface. The hair-

pin vortices were synthetically generated by shedding from a hemi-

spherical protuberance on the plane wall. Flow visualization was

carried out using hydrogen bubble wires and it was determined that

convecting hairpin vortices produce flow patterns which are very

-11-



similar to those observed in the near-wall region of a turbulent

boundary layer. In Figure 1.4, which is reproduced from Acarlar and

Smith (1984, 1987a), the bubble line patterns generated from a bub-

ble wire placed normal to the wall may be observed for (a) a convec-

ting hairpin vortex in a laminar boundary-layer flow and (b) in a

fully turbulent boundary layer. In Figure 1.4, the quantity X/R =

20 indicates that the flow pattern is at a streamwise distance equal

to 20 radii downstream of the hemisphere; Re6 is the Reynolds number

of the turbulent boundary-layer flow based on momentum thickness. In

Figure 1.5, the bubble wire was placed in an orientation across the

span of the flow and close to the wall. It may be observed that the

convecting hairpin vortices produce a "streaky" structure in the

J flow near the wall which is similar to the typical patterns observed

in turbulent boundary layers. In addition to the flow visualization

studies, Acarlar and Smith (1984, 1987a) also carried out quantita-

tive measurements in the region downstream of the hemisphere; it was

found that the measurements were very similar to those typically

obtained in a fully turbulent boundary layer.

It is reasonable to conclude from the experimental evidence

available that the hairpin vortex is a potentially important flow

structure in turbulent flows near walls and worthy of further study.

1.3 Theoretical Background

1.3.1 Inviscid Vortex Dynamics

In recent times, there has been an increasing interest in the

-12-4
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development of numerical algorithms to calculate three-dimensional

vortex motion. The general approach may be described as follows.

For a given vortex filament and a given initial configuration, a

discretization is accomplished by placing a number of nodes on the

filament; some approximation to the Biot-Savart integral (Batchelor,

1967) is then used to compute the local instantaneous velocity I
induced on a node by the other portions of the vortex. The motion

of each node is then computed numerically thus giving the position

of the vortex filament at the next time step. Such calculations

are time consuming, notoriously unstable and difficult to carry out

with good accuracy. One major difficulty is that a vortex filament

having a core of zero cross-sectional area induces an infinite

velocity on itself for any curved portion of the vortex; the

infinitesimally thin vortex is therefore not a self-consistent

dynamical model and in any computational algorithm it is necessary

to take into account the fact that the vortex has a core of finite

thickness. In addition it is, in principle, necessary to account

for motions within the core and how such motions can influence the

overall motion of the vortex.

The theoretical problem is immediately evident when the Biot-

Savart integral over all space is replaced by a line integral

along the instantaneous location of the vortex filament; a singular-

ity occurs in the integrand at any point on the vortex filament where

an evaluation of the velocity induced by the vortex is desired



(this location will be subsequently referred to as the field point).

This singularity arises as a direct consequence of neglecting the

thickness of the vortex core. Over the years, a variety of

approaches have been proposed to deal with this difficulty and

these will be discussed in more detail in Section 2.3; only a brief

summary will be given here.

The first attempts at the calculation of vortex motion in

three-dimensions were by Hama (1962) and Arms and Hama (1965). In

their "localized induction concept", a Taylor series was used to

represent the integrand near the field point; the integration was

carried out only over a short portion of the filament and the con-

tribution of the rest of the vortex was ignored. Crow (1970)

introduced the "cut-off method" wherein a small piece of the Biot-

Savart integral is omitted from the integration thereby bypassing

the singularity. In subsequent studies, Bliss (1970) and Moore

and Saffman (1972) put the "cut-off" procedure on a firmer basis

by selecting the cut-off length so that the computational algorithm

agreed with known exact results for a translating circular vortex

ring. The "cut-off method" is somewhat inconvenient from a computa-

tional point of view and an alternative (and similar) approach was

adopted by Moore (1972). In this technique, a small parameter is

artifically introduced in the denominator of the integrand to remove

the singularity; the small parameter is selected so that the pro-

cedure gives correct results for the circular vortex ring.

-16-
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Another computational approach is due to Leonard (1975,1979)

and Widnall, Bliss and Zalay (1971). In this technique, the self-

induced velocity of a vortex filament is computed through numerical

integration of the Biot-Savart integral except at the field point

and the two adjacent nodal points on the vortex. The contribution

due to these three points is estimated by fitting a vortex ring

locally and by estimating the contribution to velocity due to the

arc from known exact results for the vortex ring. Note however that

Liu, Krause and Ting (1985) point out that this process does not

necessarily give the correct direction of self-induced motion of the

arc surrounding the field point.

In recent times, Callegari and Ting (1978) have used the

method of matched expansions to investigate the dynamics of vortex

motion in three dimensions in the limit of vanishing viscosity; (see

also Bliss, 1970). These authors were able to determine the possible

form of a viscous solution in the vortex core and to match this to

an outer inviscid solution described by the solution of Biot-Savart

integral. It was demonstrated that the apparent singularity in the

Biot-Savart integral is removed by this procedure and a computational

algorithm was developed to compute the evolution of vortex motion.

Note, however, that the method at present is restricted to closed

vortex loops.

1.3.2 Influence of Convecting Vortices on Viscous Flow

Near Walls

-17-
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As a vortex is convected over a wall, it induces an unsteady

pressure gradient on the viscous flow near the wall. The effect of

the vortex motion has been studied by Walker (1978), Doligalski

et al (1980), Doligalski and Walker (1984), Ersoy and Walker (1985,

1986) and Walker et al (1987) for a variety of two- and three-

dimensional boundary-layer flows. In general, these studies show

that a moving vortex induces a region of adverse pressure gradient

in the flow near thL wall which in turn drives an unsteady boundary-

layer separation effect. In the cited studies, it emerges that a

wide variety of complex separation effects occur; however all

situations have one feature in common. Eventually the boundary-

layer flow near the wall develops strong outward local growth which

ultimately leads to a strong inviscid-viscous interaction with the

outer flow. Specific physical situations studied are as follows.

The unsteady boundary layer due to rectilinear vortex in an

otherwise stagnant fluid above a plane wall was considered by

Walker (1978). Inviscid theory predicts that the vortex will

convect at constant height and speed in the velocity field of the

image vortex. However, a short time after the initiation of the

motion, a secondary eddy of opposite rotation to the parent vortex

occurs in the unsteady boundary-layer flow near the wall. The

numerical integrations show that strong and accelerating boundary-

layer growth occurs near the secondary eddy and strongly suggest

that the boundary-layer will erupt into the outer inviscid flow

* -5B-
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region. The experiments of Harvey and Perry (1972) confirm that

this is the case and show that the inviscid-viscous interaction

consists of the ejection of the secondary eddy from the boundary

layer.

The boundary layer due to a two-dimensional vortex convected

in a uniform flow and a shear flow above a plane wall was considered

by Doligalski and Walker (1984) and Doligalski et al (1980)

respectively. At low convection speeds, the formation of a second-

ary eddy, of opposite rotation to the parent vortex, was observed

in the boundary-layer flow along with explosive outward boundary-

layer growth near the eddy. At higher convection speeds, secondary

eddies did not occur but a narrow band of strong growth was

observed in the calculations which was conjectured to ultimately

give rise to an interaction with the outer flow. On the basis of

these results Doligalski et al (1980) proposed a regenerative

mechanism for turbulent flows near walls. According to this pro-

cess, the viscous flow near the wall begins to respond to the motion

of a convecting parent vortex above the wall giving rise to

accelerating growth in a narrow band behind the moving parent vortex.

As time increases, the upwelling fluid penetrates the inviscid flow

region above the wall to an increasing extent; as the rising fluid

, penetrates the cross flow above the wall, it is ultimately over-

turned in a strong inviscid-viscous interaction leading to a roll-up

into a secondary vortex.

-19-
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The wall-layer model of Blackwelder and Eckelmann (1979) is

based on the assumption that counter-rotating vortex pairs play an

important role in the dynamics of the near-wall flow. Ersoy and

Walker (1985,1986) have computed the viscous flow development near

a wall due to counter-rotating vortex pairs above the wall. A number

of cases were considered and although a variety of unusual complex

separation phenomena were observed, the boundary-layer flow evolved

toward an eruptive state in all cases. When the sense of rotation

of the vortices is such that the flow is away from the wall between

the vortices, a boundary-layer eruption and local inviscid-viscous

interaction is indicated in a streamwise region between the parent

vortex centers; when the sense of rotation of the vortices is

reversed, the interaction occurs outboard of the vortex centers.

One feature which is missing from the aforementioned studies

and which is important in the three-dimensional flows observed in

turbulent boundary layers is vortex stretching. The subsequent

studies, Walker et al (1987) and Ersoy and Walker (1985) have

examined the boundary layer induced by a vortex ring moving toward a

wall and a vortex loop approaching a wall at angle of attack. Again

strong boundary-layer growth was observed in the numerical calcula-

tions; vortex loops stretch as they approach the wall, and as the

local vorticity levels increase, the eruptive response of the

boundary-layer flow appears to intensify.

-20-
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1.4 Summary and Overview

Current experimental research suggests that the motion of

vortices, particularly hairpin vortices, plays an important part in

the time-dependent dynamics of the turbulent boundary layer. The

studies by Acarlar and Smith (1984,1987a,1987b) suggest that hairpin

vortices are regenerative in at least two ways: (1) a hairpin in

shear appears to be able to multiply itself to the side in the sense

that secondary hairpin vortices are observed to form in the spanwise

direction out board of the original hairpin vortex and (2) the crea-

tion of secondary hairpins through an inviscid-viscous interaction

with the viscous flow near the wall was continually observed. In

Figures 1.6(a) and 1.6(b) (Taken from Acarlar and Smith (1984)) both

of these processes are depicted schematically. In the present study,

the dynamics of hairpin vortices, with particular reference to the

phenomena observed by Acarlar and Smith (1984), will be investigated

on a theoretical basis.

The plan of this study is as follows. In Chapter 2, a

numerical method for computing the motion of a vortex filament which

is based on a numerical approximation to the Biot-Savart integral

will be given. It was determined that current numerical schemes for

vortices having small core radii are highly unstable; previous

numerical investigation of vortex motion (c.f. Dhanak and

De Bernardinis, 1981) have been carried out for an unboundeu fluid

and have used relatively thick core sizes. In this type of situa-
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tion the numerical stability problem is not evident. In the present

study, it was important to develop a reliable calculation method for

vortices with small cores; this is because the main interest was in

flows with walls and once the vortex core touches the wall, the

Biot-Savart calculation must terminate.

In Chapter 3, the numerical algorithm is tested by computation

of the trajectory of closed vortex loops near a wall. In addition,

a series of calculations is performed to compute the trajectories of

simulated "hydrogen bubble lines" in the flow as the vortex passes

by. These computations show that a moving vortex loop causes the

simulated "bubble lines" to form into a streaky type of structure

near the wall. The indication of these results is that a convected

vortex loop is a potential creator of wall-layer streaks in a

turbulent boundary layer.

In Chapter 4, numerical solutions are carried out to show the

evolution of a hairpin vortex in both a stagnant flow and a shear

flow. The evolution of the vortex in a shear flow is consistent with

the experimental results of Acarlar and Smith (1984). Simulations of

hydrogen bubble lines also show that the hairpin vortex is a poten-

tial creator of wall-layer streaks. Finally, a numerical calculation

is carried out to show the interaction that occurs between two hair-

pin vortices convecting in a shear flow.

In Chapter 5, a method is described which allows the determina-

tion of the viscous response of the boundary-layer flow near the wall

-23-
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to the motion of the convected hairpin. The unsteady boundary-

layer flow is three-dimensional and unsteady and the computation of

this flow would require computer resources well beyond what was

available in the course of this study. Consequently a method was

devised which allows the calculation of the boundary-layer evolution

along the symmetry plane of the hairpin vortex. The computed

results are strongly suggestive that the moving hairpin vortex

rapidly evokes an eruptive response in the viscous flow near the

wall. Detailed conclusions are discussed in Chapter 6.

-24-
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CHAPTER 2

THE VORTEX CALCULATION METHOD

2.1 Introduction

Three-dimensional vortex motions play an important role in a

variety of practical situations involving fluid flow and consequent-

ly several computational methods have been developed over the past

two decades to predict the evolution of three-dimensional vortex

motion. In situations where the vorticity in the flow field is con-

centrated in thin vortex filaments which convect in an otherwise

irrotatlonal flow, calculation procedures are, in general, based on

the Biot-Savart law and are Langrangian in nature; the vortex fila-

ment is discretized at some initial time using a number of nodal

points on the space curve defining the filament and the subsequent

motion of the nodal points is evaluated as the filament distorts.

In this chapter, a calculation method for the evolution of vortex Nk

filaments is developed. The general features of the Biot-Savart law

are discussed in section 2.2 and some early calculation schemes are

reviewed in section 2.3. In this study an adaptation of a procedure

due to Moore (1972) was used to compute the evolution of vortices

and in section 2.4, a basic numerical instability in this scheme is

described. An improved calculation procedure is developed in "' ..

section 2.5.

2.2 The Biot-Savart Law

Consider a Cartesian coordinate system (x,y,z) with origin at

-25-
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0 and let the velocity vector at a point P0(x0 ,yozo ) be denoted by

u(X ) where Xo is the vector from the origin to the point Po. In

general (Batchelor, 1967), the velocity at P0 is related to the

vorticity distribution _ throughout space by the Biot-Savart law

which is given by,

u ( 0) f X-'X x dV(X) + u ext(Xo) (2.1)

V X0Xo - xet

In equation (2.1) the volume integral is carried out over all space

where the vorticity is non-zero and 'ext is an background external

irrotational velocity field. The variable I is an integration vari-

able and the vector X - X is directed from the field point Po to

locations in the volume V as the integration in equation (2.1) is

carried out.

Now consider the physical situation where the majority of the

flow field is irrotational and the vorticity is concentrated in

vortex tubes of small cross-section. For a single vortex tube, as

the cross-sectional area of the tube approaches zero, the vortex

approaches being a line filament defined by a space curve. The

vorticity vector at any point on the curve may be written as,

W= a (2.2)

where t is the unit tangent to the curve (as indicated in Figure 2.1)

and o is the local magnitude of the vorticity. Note that the direc-
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tion of positive vorticity is determined by the right hand rule and

for the situation in Figure 2.1, a vortex having the indicated sense

of rotation has negative s. Since the vorticity is assumed to be

non-zero only within the small vortex core, the integrand in equa-

tion (2.2) vanishes except within the core where the volume element

may be written,

dV = dAcd . (2.3)

Here dt and dAc are differential length and cross-sectional area

elements along the core, respectively. The integral of the vorticity

distribution over the cross-sectional area of the core may be related

to the circulation about the core by Stokes' theorem and it is easily

shown that

si~dA~ =C -s*? r .(2.4)

c

Here C' is any closed contour surrounding the vortex core and ds is a

.' length element on this path. According to Kelvin's theorem

(Batchelor, 1967), the circulation r is constant in time and also

constant along the length of the vortex filament. Consequently, the

Biot-Savart law (2.1) becomes,

r (Xo'X) -

U( - f 4 x dX + uext(Xo) , (2.5)SI-xl0- ext
"J 0
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where dX is a differential length element along the space curve C

defining the current position of the vortex. Since u(Xo) = ax0/A,

equation (2.5) apparently defines a differential equation from

which the evolution of each point along the vortex can be traced

forward in time. The difficulty is that for X on the curve C, the

integrand is singular and consequently the velocity field described
by equation (2.5) must be interpreted as an outer inviscid solution

which is not uniformly valid near the core of the vortex. To de-

fine a rational calculation procedure, it is in theory necessary to

SI match any solution obtained from equation (2.5) with an inner solu-

tion in the vortex core and thereby take into account how the evolv-

ing flow in the vortex core influences the overall motion of the

vortex. It emerges that this is a rather complex problem and

although recent progress has been made (Callegari and Ting (1978)) in

this area, a variety of approximate methods have been used over the

years. Some of these techniques are discussed in detail by Ersoy

and Walker (985b) and only a brief summary is given here.

2.3 Previous Calculation Methods

For vortex motions in three-dimensions, there is one flow

situation where the core solution can be determined and subsequently

matched to the outer inviscid flow field described by the Biot-

Savart integral; this is the problem of a circular vortex ring which

propogates into an otherwise irrotational flow and has been con-

sidered by Tung and Ting (1967) and Saffman (1970). Consequently
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there is one exact solution for three-dimensional flows and this

solution has been used to structure a number of vortex calculation

methods. In the early calculation methods of Widnall, Bliss and

Zalay (1971) and Leonard (1975,1979) the curve defining the vortex

filament was first discretized into a number of nodal points; as

the vortex filament moves, the velocity induced by the filament at a

particular nodal point was calculated by a numerical integration of

the Biot-Savart law except over the segments of the vortex on either

side of the nodal point in question. The contribution of the in-

duced velocity due to the segments of the vortex adjacent to the

nodal point was then estimated by fitting a vortex ring through the

three adjacent points; the velocity induced by this arc at the nodal

point is then estimated using the known results for a circular

vortex ring. The approach has been termed a "patched" solution

technique by Liu, Tavantzis and Ting (1984) and does not neces-

sarily give the correct direction of the self-induced motion locally.

Another approach to the cut-off method originally described by

Crow (1970) in his investigation of the stability of aircraft trail-

ing vortices. In this method, a portion of the filament near the

singularity at Xo is simply omitted in the Biot-Savart integral.

Let s measure distance along the space curve defining the instantan-

eous vortex position and let so denote the value of s corresponding

to Xo; in the cut off method, the approximation to the Biot-Savart

integral is,
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-E

r 0( ds
u(sot) : -[ -(x ds (2.6)

The notation in equation (2.6) implies that an interval of length 6 I
has been omitted in the integration on both sides of s S0; Crow

(1970) determined a value for the cut-off length 5c by comparing

the result predicted by equation (2.6) when the vortex is a circular

ring with the known exact solution. As a result of this comparison,

a value of 6c = 0.642 a was suggested by Crow (1970); here a denotes

the small (not nonzero) radius of the vortex core. Moore and

Saffman (1972) were subsequently able to give a formula for c

according to,

6 2a

6 o 1 4r87r a,
0 0

where r measures distance from the center of the vortex core and v'

and w' denote the swirl and axial velocities in the core. The right

side of equation (2.7) was obtained from detailed results for the

flow in the core of a circular vortex ring; note that the result in

equation (2.7) relates the cut-off length to quite general velocity

distributions within the core but also that the validity of the cut

off method is assumed.

From a computational standpoint, the cut-off method of Crow

(1970) is normally not a convenient algorithm for the following

reason. Calculations involving the Biot-Savart law are Lagrangian
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in character; the space curve defining the vortex at some initial

instant is discretized into a number of nodal points which then may

be considered to be Lagrangian markers. The object of the numerical

integration is to trace the path of these markers and thus determine

the shape of the vortex filament at subsequent times. To use Crow's

(1970) method, it is necessary to subtract a portion of the integra-

tion range near each point so in equation (2.6); generally the cut-

off length will not correspond to the mesh length and indeed will

change with time in general. An alternative approach is due to

Moore (1972) and has its origins in a study by Rosenhead (1930); in

this techniquethe singularity in the integrand is removed by

artificially inserting a small parameter u into the denominator and

equation (2.5) is written according to,

U(st) = 2 -xds+ et ) (2.8)

' {Io 0 j12+2} 3 /2 e

Here s is a coordinate along the vortex and s0 denotes a specific

location on the vortex. The integral is now taken over the entire

vortex and an expression for the small parameter w is obtained by

insisting that equation (2.8) give correct results for the circular

vortex ring. The following expression is obtained for u (Moore,

1972; Ersoy and Walker, 1985b).

1 4., a 8 ;' a
1 - - r v' rdr + -- f w''rdr (2.9)

0 
0
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It may be observed from equations (2.8) and (2.9) that the internal

structure of the vortex core flow influences the overall motion of

the vortex only through the parameter p in equation (2.8) which is

calculated as an integrated effect over the core via equation (2.9).

It might be expected a priori that the core radius a could be a

function of position s along the vortex as well as of t. However,

Moore and Saffman (1972) have argued that the vortex core does not

vary in the axial distance and is uniform at any instant in time;

the physical reasoning is that any local non-uniformities in the

vortex core will be rapidly smoothed out by travelling internal

waves on a time scale which is much smaller than the time scale

associated with the overall motion of the vortex itself. Thus the

vortex core radius may be regarded as a function of time alone and

Moore and Saffman (1972) also show that

L(t)a 2 (t) = constant , (2.10)

where L(t) is the total arc length of the closed vortex filament at

time t; this result simply states conservation of volume of the

vortex core. It follows from equation (2.10)that the core radius at

any instant in the motion is described by,

a(t)= a {f J- Xds} 12, (2.11)
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where a0 and L are the initial core radius and vortex length,

respectively. It is worthwhile to note that these are rather strong

results which have been confirmed by the asymptotic analysis of

Callegari and Ting (1978). However the results apply only to a

vortex filament which is closed and therefore of finite length. In

addition, it appears that the theoretical description is incomplete

since it does not account for situations where local variations in

core size are observed before a phenomenon known as vortex break-

down occurs.

Moore (1972) has used equation (2.8) to compute the motion of

aircraft trailing vortices; the method was also subsequently used by

Dhanak and De Bernardinis (1981) and by Dhanak (1981) to calculate

the evolution of elliptic vortex rings and a vortex filament

approaching a rigid sphere,respectively. In these calculations,

typical values of the vortex core radius used were on the order of

0.2. Although the integrand in equation (2.8) is finite everywhere,

it may become quite large near so , particularly in situations where
06

the vortex is undergoing stretching and a (and henceo) decreases. To

avoid potential inaccuracies in the numerical evaluation of the

integral near so , Moore (1972) obtains the leading term in an

expansion around s = so according to,

d X-X) +__
0 _ _
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s-s° ) .-r

P(s) = 12 (2.13)
2 aX 2  3/2'af(s-so 2)

and the subscript o indicates that the partial derivatives are

evaluated at s = so; the leading order form of the integrand near

s s is added and subtracted to the integrand to obtain,

( x2 - I, -" ( 2-"-

iX(s )t) - x X) P(s)}ds0 Cas do- X I2+l2  .s3,

A" (at O /2X\ ~ ~ s. -
f -) x 7s- -o C P.-.,

C
4.-

_ aX )___
aSx 0 - ds + u (2.14)

image I X0-Xl d ext

The apparent advantage of this procedure is that the integrand in

the first integral is 0(1) everywhere while the second integral may

be evaluated analytically. The method was used with good success by .1
Moore (1972), Dhanak and De Bernardinis (1981) and Dhanak (1981);

however, in all of these studies rather large values of the core

radii (a-0.1-0.3) were used. In the present study, one objective

was to compute the evolution of hairpin vortices close to solid

walls and to avoid situations where the vortex core impacted the

wall at relatively early stages, it was considered desirable to be

able to compute cases with very small vortex cores. It emerged

that the method of Moore (1972) exhibited strong numerical insta-

bility for small values of a; a modified formula based on equation I-I
-35-
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(2.8) which is suitable for small a was developed in this study

and this will be discussed in section 2.5.

Another approach to the computation of vortex motion in three-

dimensions was originally described by Arms and Hama (1965) and this

is the "localized induction approximation". In this approach, it

is assumed that the dominant contribution to the self-induced

vortex velocity occurs locally; in this approach, the integrand in

the Biot-Savart law is approximated everywhere by its asymptotic

form near s = so and it may be shown that,
*0~'0

x a2X\

as2x ( )
u(s0)as 0 ts-)o log(1 ) + 0(1) (2.15)

* aso01

Note that this result may be obtained from equation (2.14) by

ignoring the first integral and integrating P(s) from s = -k to +k

where z is an 0(1) number; the integral over the image as well as

the external field are also ignored. In equation (2.15), a is

Iassumed to be small so that -log(a)>>l and the first term of equa-

tion (2.15) is presumed to describe the leading order behavior of

the velocity field 
everywhere.

The "localized induction approximation" was used by Arms aid

Hama (1965) and more recently by Aref and Flinchem (1984) to obtain

some interesting results. In the latter study, the term log(l/a)

was regarded as a large but unknown quantity which could be absorbed

in a time scale; results which bear a similarity to those obtained

kg-

-36-



in the present study were found for the propogation of a three-

dimensional distortion on a two-dimensional vortex. However, it was

evident at the outset that three-dimensional vortex motion involves

some rather complex p'enomena which often cannot be obtained

through phyrical intuition; in addition, the effect of the wall was

of prime c...cern. For these reasons, it was considered important

to carry out numerical integrations of the full Biot-Savart law and

to account for the presence of the image vortex.

One other approach should be noted. Recently Liu, Tavantzis

and Ting (1984) have described a computational method for closed *.'.

vortex loops which is potentially more general than some of the

methods described here. The computational method is based on a

previous analytical study by Callegari and Ting (1978) in which

asymptotic methods were used to write the Biot-Savart integral in

equation (2.1) as a part which is bounded everywhere (the finite

part) plus a part which becomes singular as the curve defining the

vortex core is approached; the analysis is valid for small vortex

cores. Within the core, the flow is viscous and Callegari and Ting

(1978) investigate possible unsteady solutions of the core equa-

tions; these are matched to the outer inviscid solution corresponding .

to the singular part of the Biot-Savart integral. Consequently, in

this approach the evolving flow in the vortex core influences the

overall motion of the vortex loop to an increasing extent as time .

passes. The details of the asymptotic analysis are complex and

will not be summarized here. To date, the method has not been
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extended to three-dimensional vortex filaments of infinite length,

which are of principal interest in this study.

2.4 An Instability Associated With the Moore-Rosenhead Method

In the present study, the calculations of three-dimensional

vortex motion were based on the Moore-Rosenhead model equations (2.8)

and (2.9) for the Biot-Savart integral. The algorithm based on this

model is convenient for computational purposes and is believed to

realistically model the evolution of vortex motion. In order to

avoid loss of accuracy in evaluation of the integrand, the procedure

suggested by Moore (1972) given in equation (2.14) was used. How-

ever after running several test cases, it was determined that the
scheme suffered from serious instabilities which generally became

worse with either decreasing core size or an increased number of

points on the vortex. To illustrate the problem, consider the case

of a circular vortex ring which is moving on a normal trajectory

toward a plane wall; the exact solution for the problem is known

(Walker, Smith, Cerra and Doligalski, 1987) and it provides a con-

venient test case for the present calculation methods. Since,

U(SoXt) 2= X (sot) (2.16)0 ~

equation (2.14) defines an initial value problem; for a specified

number of mesh points along the vortex, equation (2.14) may be

integrated forward in time to track the motion of each individual
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point (denoted by s on the vortex. The results of such a calcula-

tion are shown in Figure 2.2; here a vortex ring (of radius 1) has

been started at a height 0.5 units away from the wall. The vortex

core was assumed to be in solid body rotation with core radius

a = 0.005 and with v' = rr/27a 2 , w' = 0 it follows from equation

(2.9) that,

S=a e (2.17)

In the calculation depicted in Figure 2.2, there were 100 nodal

points on the vortex and the time increment was At = 0.005. It may

be observed that the ring proceeds smoothly toward the wall but that

wiggles have developed in the ring by t = 0.05. Once "wiggles"

develop in the ring shape the calcuation rapidly breaks down and

gives nonsensical results as indicated at t = 0.055. The onset of

the appearance of the wiggles can be delayed somewhat by reducing

the time step but the problem is made worse by using more mesh points

to discretize the vortex.

The difficulty depicted in Figure 2.2 is due to a deficiency in

Moore's (1972) method and has not been previously observed by Moore

(1972), Dhanak and De Bernardinis (1981) and Dhanak (1981) because

these authors have used relatively thick cores (a=O.l to 0.35).

Here, because of the presence of the wall, it was considered

desirable to be able to use very small cores and consequently it was

necessary to find a resolution of the problem.
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The difficulty which gives rise to the instability is

associated with the fact that for small values of a (and hence p) the

demoninator in the first integrand in equation (2.14) is small near

s = s and hence inaccuracies in the derivative X/Ds are magnified.
The integrand in the first integral in equation (2.14) is plotted in

Figure 2.3(a) for a typical point so at t = 0.01 for the calculation

depicted in Figure 2.2. It may be observed that the integrand

exhibits anamolous behavior near s = so; it does not tend smoothly

to zero and shows two small negative spikes on either side of s s.

If the number of mesh points is increased to 200, the size of the

spikes diminishes but the phenomena persists. With increasing mesh

points on the vortex, the numerical evaluation of the gradients

X/as is in general more accurate and this is reflected in the

diminished levels of the spikes in Figures 2.3. In Appendix A, it

is verified that the problem is due to a inaccurate evaluation of

the first integrand in equation (2.14); a basic modification of the

scheme is considered next.

2.5 The Present Method

The motivation behind the algorithm (2.14) described by Moore

(1972) was to obtain an accurate evaluation of the integrand near

S o= However the results of the previous section and the

discussion in Appendix A shows that there are still difficulties

with the procedure for vortices with small cores. To eliminate

these problems, the integrand in the first integral of equation
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(2.14) was represented by higher order terms in an expansion about

s = S; the details are described in Appendix B and if R(s,s o

denotes the integrand in equation (2.14) according to,

R(SSo)= - a-)o x (--= #o P(s) , (2.18)0 as I' o-X12+p2}3/2 as 0

XV

where P(s) is defined by equation (2.13), it can be shown that

= R(SS D 3(s-So )3 i D4(S-So)4 + and (2.1)

where D and D are vectors defined by equations (B.9) and (B.cd) in

3 4.

Appendix B in terms of vector products of derivatives of X evaluated

at s S o (

In Figure 2.4, the exact value of the integrand R(s,s o is plot-

00

ted; here the expressions for a ring given in equations (A.2) and

(A.3) in Appendix A have been used to evaluate the gradients in

equation (2.18). The result for R(S,So) using numerical differentia-

tion to compute the gradients and the local approximation (2.19) is

also plotted in Figure 2.4. It may be observed that the local

approx'imation (2.19)represents R very well for small (s-so ) and that

the behavior depicted in Figure 2.3 no longer occurs.

A calculation method for the vortex ring may now be structured

as follows. Iii equation (2.14), the first integral is split into

three parts and,
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a ring vortex.
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1 -h -X (X-X)(so't) = [ + _ ][- x
aX o I~T s t) -i{i I o Xl 2+ 12 3 / 2

0a

a(-)X a X ) P(s)]ds

h
h f ~s )ds r aX , a2X 1
+-h(,S)s +1 x~~ (-S-7) f P(s)ds}

-- 1

r1 o-I
f - x . -; ds (2.20)

o-( limage

In the ranges, [l,h), [-1,-h), the first integrand is evaluated as

before while in the interval [-h,h] surrounding the point s = so,

the integrand is evaluated using the series representation (2.19).

Calculations were once again carried out for the vortex ring moving

toward the wall (r<0) and the results are shown in Figure 2.5.

Here a total of 100 mesh points were used on the ring with an

initial vortex core radius of 0.005 and at time step of 0.002. It

may be observed that the calculation proceedes without difficulty

"* until the ring is quite close to the wall in contrast to the

results of the computation depicted in Figure 2.2. Note that in

equation (2.20), the value of h must be selected small enough so

that the series in equation (2.19) is convergent; for the calcula-

tions depicted in Figure 2.5 h = 3As and the integrals were evalua-

ted by Simpson's rule.
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Figure 2.5 -Results for the trajectory of a vortex ring
(viewed from the side) approaching a wall
using the present method.
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CHAPTER 3

THE INFLUENCE OF MOVING VORTEX LOOPS

3.1 Introduction

It is commonly believed that vortex motions play an important
AN

role in the dynamics of the turbulent boundary layer. Both closed

loop vortices (rings)[Falco (1982,1983), Falco and Wiggert (1980)]

and hairpin vortices[Acarlar and Smith (1984,1987a,1987b)1have been

proposed as principal vortex structures in the outer region of the

turbulent boundary layer. Wall-layer streaks are observed in the

near-wall region of turbulent flows during the relatively long

periods of time when the wall-layer flow is not strongly interacting

with the essentially inviscid flow away from the wall; (Walker,

Scharnhorst and Weigand, 1986). It is therefore of interest to

understand the types of vortex motion which will induce a streaky

structure in the flow near a wall. In this chapter, the effect of

convecting vortex loops will be considered; the question of con-

vecting hairpin vortices will be addressed in Chapter 4.

The numerical calculations that will be described here may be

thought of as an inviscid simulation of the motion of hydrogen

bubble lines. First the trajectory of a vortex ring was computed

using the method developed in Chapter 2; for situations where the

ring is initially inclined at an angle to the wall, the ring

rapidly distorts into a vortex loop due to the effect of the wall.

As the vortex loop convects above the wall, it is of interest to
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understand the nature of the induced flow near the wall; in

typical flow visualization experiments, hydrogen bubble lines are

used to mark the flow and the nature of the flow is then inferred

from the subsequent motion of the bubble lines. In the present

study, the bubble lines were simulated by numerically tracking the

motion of several initially straight lines near the wall as the

vortex loop convected past. The objective of this simulation is

to determine whether the convecting vortex will induce the marker

lines to form a streaky structure.

3.2 The Trajectory of Vortex Loops

Consider a vortex ring having an initial radius R which is

initially inclined at an angle a to the wall as indicated in

Figure 3.1; here the a measures the angle between the normal to

the plane of the ring and the wall. If / = /2, the ring will

remain circular and either move toward or recede from the wall

depending on the sense of the circulation; as the ring moves to-

ward the wall, the ring radius will increase. If a 7 7/2, the

ring will immediately start to change into a "rubber-band" loop

shape. In this section, the results for various vortex trajectories

will be described.

In all cases described here, the initial ring radius R was

used as a representative length and 47R 2/Ivr was used as a time

scale to define dimensionless variables. Let s be a Lagrangian

variable on the vortex loop which ranges from -l to +1 with s =
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corresponding to the same point (initially opposite from s 0 on

the ring). In dimensionless form, equation (2.20) becomes

1 -hj+ (X -X).
AXfd 0*- (Solt) = sgn(r){ + f X x o-

-0 IX _X2+ ,213

haX a2X
(-) x (-2-)oP(s)}ds + sgn(r) f R(s,s )ds
asO 0 5 a h 0

'p..
sg r X (,2X) f P(s)ds

1 + -)-~~ sgnr / X x 0o
sgn(r) .. . ds . (3.1)

- o_X1 image

For a closed vortex loop, it may be shown (Ersoy and Walker, 1985b).

that

1 2Ao
f P(s)ds - 1 1 lo _T
- 0 A 0 v 2Ao3/2

+ .4 o(Ao+2 4, (3.2)
+17 A

where A Xo  Xo . The parameter is related to the vortex core
0 0 0

size through equation (2.17) and at any instant the core radius *1
a(t) may be computed from equation (2.11).

Starting from an initial ring configuration, the solution of

equation (3.1) was advanced forward in time using a fourth-order
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Runge-Kutta procedure. The spatial derivatives were computed at any

instant using central differences and the numerical integrations

were carried out using Simpson's rule.

Some typical results are shown in Figure 3.2 corresponding to a

ring initially inclined at c 1350 to the plane. For this calcula-

tion, r < 0 and so the vortex loop recedes from the wall; the

initial core size was ao = .005 and the calculation was carried out

with a time step At = 0.005 with 100 points on the vortex. The ring

center was initially at x = 0, y = 1.2. As the vortex recedes from

the wall, there is some contraction in the size of the loop until

eventually the influence of the wall becomes negligible. Another

case using the same numerical parameters is shown in Figure 3.3 for

a ring which recedes from the wall on a normal trajectory; note that

the ring radius decreases as the influence of the wall progressively

diminishes.

3.3 Simulation of Hydrogen Bubble Lines
The vortex loop trajectories computed in the previous section

* are essentially unaltered if a uniform flow is superimposed in the

positive x-direction, with the exception that the vortex loop is

progressively convected to the right. In this section, the main

interest is in determining the distortions that will occur in a

pattern of simulated hydrogen bubble lines near the wall as the

vortex convects over the bubble lines. Consider the schematic

diagram in Figure 3.4; here a uniform flow of speed V is super-
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Figure 3.3 Trajectory of a vortex ring movinq
normal to the wall.
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. ~imposedto the right so that the vortex loop is progressively con- 'i

vected to the right. To simulate a boundary-layer region with .,

velocity gradients near the wall for y < 6, the unsteady inviscid "

velocity distribution was multiplied by y16; thus the velocity field --

for y > 0 is described by :

V (xsy,z,t) y> ,
inv(

V(x,y,z,t) = (3.3)

..' L~~inv(X'y'z't)(Y ) Y< _...

A constant value of 6 =0.05 was used in this simulation. It should

4•..

be noted that this simulation is purely kinematical; a convected

vortex will generally induce w ryebehavior in the viscous flow

near the wall (Walker, 1978; Doligalski and Walker, 1984; Walker

4.'

r et al, 1987). The present simulation does not take account of this

v-, , effect which will be addressed in Chapter 5.

Assume now that a hydrogen bubble wire is placed in the region

of uniform shear near the wall at y = ho 
= 612. When an electric i

'" current is passed through the wire, a line of hydrogen bubbles is .

p ~produced in the water. In the absence of the vortex, these lines .,m

i* 
1.n *

,. would convect downstream and remain straight lines; viewed from the-"

,..

cside (Figure 3.4(a)). These lines would appear as a series of con-

~vecting points; the top view in the absence of the vortex is

depicted in Figure 3.4(b). In the simulations that will be de-

scribed it was imagined that 17 equally spaced bubble lines were

4'
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placed in the flow near the wall; the vortex was then introduced

into the flow and the subsequent trajectories of the bubble lines

were computed numerically. Let H denote the position vector to a

point on a simulated bubble line; the trajectory of any point on the

line may be computed from,

aH sgn(r){ f 3- x ds

-l iH-XV vortex

fl 2x (H-X) ds)f(y/6) , (3.4)
-f a JH-XJ3 image

where

f(y/6) = (3.5)

VY y < 6

In the calculations that will be described 51 mesh points were used

to discretize each of the simulated bubble lines. In the figures

that will follow the projection of the convecting vortex loop in

the xz plane will be shown as a broken line as indicated in

Figure 3.4(b).

3.4 Calculated Results

Consider first the situation corresponding to a ring moving

away from the wall on a normal trajectory (c=r/2) with a uniform

flow of speed V = 6 superimposed to the right. The trajectory is

depicted in Figure 3.5 in side view. In Figure 3.6 the computed
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evolution of the simulated hydrogen bubble lines is shown at various

stages of development. In Figures 3.7 and 3.8, the development is

shown at various stages as viewed from the side and end on

respectively; in these figures the dotted line represents the top of

the simulated boundary-layer region at y = &. It may be observed,

upon inspection of Figures 3.5, 3.6 and 3.7, that the motion induced

by the convected ring vortex acts to concentrate the simulated

hydrogen bubble lines into a "streaky" type of structure in the

streamwise direction.

The second case detailed here corresponds to the same vortex

configuration as in the first case but with the convection speed

reduced 50% to V = 3. The vortex trajectory in side view is shown

in Figure 3.9. The temporal development of the simulated hydrogen

bubble lines for this case is shown in Figures 3.10, 3.11 and 3.12

in top, side and end views respectively. Again it may be observed

that the effect of the convected ring is to draw the simulated flow

markers into a "streaky" type of structure.

The last case considered here corresponds to a vortex ring

which was initially started inclined at an angle of c = 135' to the

wall. In this case, the ring immediately starts to deform into a

vortex loop shape; the trajectory is depicted in Figure 3.13 in a

situation where the vortex is convected to the right with a speed of

V = 10. Note that in this case the vortex stays closer to the wall

than in the previous situations; as is increased toward 180' , the
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trajectory of the vortex loop remains progressively closer to the

wall. The deformation of the simulated hydrogen bubble lines in top,

side and end views is shown in Figures 3.14, 3.15 and 3.16. Again

it may be observed that the moving vortex collerts the simulated

flow markers into a streaky structure. The results obtained in this

case are representative of all cases that were considered for

a j 90* For trajectories with a closer to 1800, the vortex remains

closer to the wall; the simulated bubble lines are stretched to an

increasing extent but also remain closer to the wall.

3.5 Conclusions

It may be concluded from the calculated results of this section

that a convected vortex ring or vortex loop is one possible vortex

motion which can give rise to a streaky structure in the flow near

the wall. In Chapter 4, another type of vortex will be considered,

namely the hairpin vortex, and it will be demonstrated that this

type of vortex motion also gives rise to a "streaky" type of

behavior.
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CHAPTER 4

THE EVOLUTION OF A HAIRPIN VORTEX

4.1 Introduction

In recent times it has become evident that the hairpin vortex

may be a principal flow structure of the turbulent boundary layer.

This viewpoint was expressed first in an early study by Theodorsen

(1952) and a number of contemporary experimental studies have

supported this idea (see for example Head and Bandyopadhyay, 1981;

Perry and Chong, 1982 and Acarlar and Smith, 1984, 1987a, 1987b).

In this chapter, the nature of the evolution of a hairpin vortex in

a background flow is considered. The calculations described here

are inviscid simulations which are based on an appropriate discret-

ization of the Biot-Savart law. The plan of the chapter is as

follows. In Section 4.2, the equations of motion governing the

evolution of a three-dimensional distortion in an otherwise two-

dimensional vortex are described; the numerical scheme used to com-

pute the trajectory of the vortex is described in Section 4.3. Cal-

culations for the evolution of a haripin vortex in either a stagnant

or uniform flow above a plane wall are described in Section 4.4.

Computations for the development of a hairpin vortex in a shear flow

above a wall are discussed in Section 4.5 and a discussion of re- 1
sults is given in Section 4.6. The effect of moving vortices is

often observed experimentally usinq hydrogen bubble wires in water

flows; in Section 4.7, the results of a numerical simulation are

S..
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described wherein the evolution of simulated hydrogen bubble lines

was computed numerically as a hairpin vortex in a shear flow con-

vected past. In Section 4.8, the nature of the streamwise velocity

fluctuation induced by a moving hairpin vortex is described.

Finally, calculations for the evolution of a pair of interacting

hairpin vortices in a shear flew are described in Section 4.9.

4.2 Equation of Motion

It is convenient to develop the equations of motion in a

dimensionless form and for the hairpin vortex motion of interest,

it is necessary to define a velocity and length scale. Consider

first the situation depicted in Figure 4.1(a) where a two-dimensional

vortex of constant strength < is located a distance d above a plane

wall. For the sense of circulation indicated in Figure 4.1(a),

inviscid theory predicts that the vortex will move to the left with

speed,

U (4.1)Uo =

and remain at constant height d above the wall as it convects in the

velocity field of the image vortex below the plate. Now consider

the more complex situation depicted in Figures 4.1(b) and 4.1(c)

where a hairpin is in motion above a plane wall. In the present

study, the hairpin was taken to evolve from a small local distortion

in a two-dimensional vortex; at large distances from the hairpin the

vortex will continue to behave like a two-dimensional vortex. 'or

the present purposes, it is convenient to define dimensionless

-76-



0261 AN ANAYSIS OF THE NOTION ANO EFFECTS OF HAIRPIN2/
VORTICES(U LENION UNIV IETHLEHEN PR DEPT OF NECHANICAL
EINGINEERING AND H.. T HON ET AL JUN 6? FM-11

LINLASE jSRTR-*-399F960 95-jj FO 2 *j



In m

iii1 2 .2
Sl IIII.g36 IA-0 112.

1111IL125 1.6t~t~

%j % *-

l ~-..../lI.N *** ~ ll.. n'%



K

dQ

(a) Two-dimensional vortex (side view)

(b Hairpin vortex (oblique view)

(c) Hairpin vortex (side view)

Figure 4.1 - Vortex motion above a wall.
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variables in terms of d and the velocity defined by equation (4.1)

according to

t*u0~it
X*  t*U 0 Kt*

X -(4.2)

where the asterisks are used to denote a dimensional quantity. Note

that the magnitude of the circulation Irl is related to the vortex

strength e by,

Ir = 2V K . (4.3)

For situations of interest in the present study, r < 0 (c.f. Figure

(4.1)) and the initial vortex configuration used is given by,

X(s,t) A{cosai + sinajle + j + sk . (4.4)

This configuration corresponds to a two-dimensional vortex located

at a distance 1 from the wall with a symmetrical three-dimensional

distortion centered at s = 0. Here A represents the amplitude of

the distortion and a is the angle the plane of the distortion makes

with the plane wall; in addition a is a (large) number whose value

determines the width or spread of the distortion. The parameter s

is a Lagrangian coordinate which ranges from -- to +- along the

vortex.

The integrals involved in the Biot-Savart law are over infinite

ranges. However it is not possible to carry out a numerical inte-
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gration for infinite values of s and in practice, the computations

must be carried out up to some large but finite value of s, say

s +-. For Isl > z the vortex filament was assumed to remain as

a straight line and

X(s,t) = i + j + sk , {sl > k (4.5)

Note that t must be selected large enough to ensure that there is

no significant effect on the development of the hairpin vortex; as

the hairpin vortex begins to spread in the spanwise direction, it

was necessary to continually increase the value of z.

In the present case, the generalization of equation (2.20) (in

dimensionless variables) for a vortex filament of infinite length is

ax@X (sot) : Z lj(so't) + 'x (4.6)t j :l U 0ext 'i

4.

where the integrals I. are defined by the following expressions:

(1) The Integrals on the Main Part of the Vortex

I, -h 4v(S'S°0t)ds 12 4 iv(S's°0t)ds, (4.7)

where

+(X -X) a2X
Q -- x + ax P(Sso). (4.8)

as IxX12+p2}3 /' (*~ 0  3S 0 0

00
-79--
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Here P is defined by equation (2.13), the variable s is a Lagrangian

coordinate along the vortex and the subscript o implies that a

quantity is evaluated at a specific point s = so where the local

velocity is being computed in equation (4.6). In addition, the

quantity h denotes the half-interval removed from the conventional

integration over the vortex; for Isl < h, the representation of the

integrand is replaced by the series expansion given in Appendix B

and there is

(2) The Integral Near the Field Point

h
13 = f R(s,s ,t)ds , (4.9)

-h 0

where R is defined by equation (2.19) and corresponds to the detailed

series expansions near s = so given in equation (B.8) (Appendix B);

(3) The Integrals on the Straight Part of the Vortex

-t0
1

4 = Qwds + f QvdS , (4.10)

where,

4.~

a X(Xo_X)
Qw = asx -a-X 312 (4.11)> iIXo-Xl2+ 2}3/

(4) The Integral of the P function

aX ca2X\

I (as-- xf P(Sso)ds , (4.12)
5 as 0 0 -Z
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where P is defined by equation (2.13);

(5) The Integral on the Main Part of the Image Vortex

16 = f Qids (4.13)

where,

_.*. j ( X -X ) 5 ,"
ax x 0 (4.14)

0 
S

and finally, VV

(6) The Integrals on the Straight Part of the Image Vortex

17 = f ids + f Qids , (4.15) .0,

where Qi is defined by equation (4.14).

1

The integrals (4.7), (4.9) and (4.13) were evaluated numerically

using a procedure based on Simpson's rule; the remaining integrals

were evaluated analytically. The integral appearing in equation

(4.12) is,

i (so-£ (s+)
f P(s,s )ds = o)
_ -Z 0g Bo (s o_ +P 2}/ 2  

-B( s- )+V 7 (

S1 ' 
'U

B0 [uc-soB- o(S )2 +Ui/2V' B 1/2(o 16)

-81-



where,
-3-,

B0 = 4-) o (-) (4.17)as 0 as 0

To evaluate the integrals in equation (4.10), it is first noted that

along the straight portions of the vortex,

(yo-y)i-(Xo-X)j i(

0 0 0
QvC=  )2= y 2+(Zo_)+ 23/2 , ISl >_ z (4.18) .

{ (x-xo )  0+y-y o-,2V

where (xoY o ,Zo) are the coordinates of the field point on the main

part (the curved portion) of the vortex at s = so; x(t) and y(t)

are the streamwise and normal coordinates of points on the straight

part of the vortex. For fixed t, x(t), y(t) and (xoYozo) are

fixed and upon taking the integrals indicated in equation (4.10) it

is easily shown that,

14 = XoX)i+(yo-y)i } j  + x',- (z.

X-X) 2+(yY)2+(Z Z)2+1J2}3/2

(z 0 +t 321(4.19)
{(xoX)2+(yO-y)2+(Zo+9)2+p2 }3/2 .

In a similar manner, the corresponding integrals in equation (4.15)

may be evaluated along the straight part of the image vortex with

the result that,

YO [y+Y)i-(X0-x)jJ (z 0 -2
17 = -XX)z+(yo+Y)2J {(xoX)2+(yo+y)2+(Zo-Z)2}3/2

{(Xo-) 2+(yO+y) 2+(Zo+Z)2}3/2. (4.20)
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4.3 Numerical Methods

Starting from the initial vortex configuration described by

equation (4.4), the subsequent shape of the vortex was tracked for-

ward in time using the standard fourth-order Runge-Kutta algorithm.

The initial vortex was split into a number of equal increments in

the variable s and the subsequent motion of each point corresponding

to a fixed value of s was tracked forward in time. The spatial

gradients in equations (4.8), (4.12) and (4.14) were evaluated using

three-point central difference formulae and the integrations in

equations (4.7), (4.9) and (4.10) were carried out (at fixed t)

using Simpson's rule. After some experimentation, the value of h

(in equations (4.7) and (4.9)) used corresponded to one mesh length

in s.

4.4 The Evolution of a Hairpin Vortex in Stagnant Flow

In the cases discussed in this section, the vortex was assumed

to have the initial configuration given by equation (4.4) and to be

in an otherwise stagnant flow above the wall (Uext = 0 in equation

(4.6)). Note however that the subsequent development of the vortex

in this case is identical to that for a vortex in a uniform flow

( = U i) with the exception that the vortex would be convected
ext o

to the right (for Uo > 0). In all cases considered the vortex was

assumed to have a small core radius a = 0.02 which was held constant

during the integration. Note that this may be approximation; the

theory of Moore and Saffman (1972) applies only to closed filaments
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and a relationship like equation (2.10) cannot be used since a

discontinuity in core size would ultimately develop at s = ±z. The

more recent theory of Callegari and Ting (1978) also applies only to

closed loop vortices.

In the first case considered, the hairpin vortex was assumed to

have an initial amplitude of A = 0.5 and angle of inclination of

= 450 in equation (4.4); the value of the spread parameter used

was 20. It emerges that the self-induced velocities predicted by

the Biot-Savart law are rather large, particularly near s = 0

where the curvature of the vortex is initially largest. Consequently

it was necessary to take rather small time steps in order to avoid

the occurrence of "wiggles" or sharp corners in the vortex shape;

once sucn anomalies appear, the numerical scheme rapidly breaks

down. A time step of At = 0.0002 was used in the integrations. For

the first case, a uniform mesh size of As = 0.005 was used and

initially the value of X employed was z = 2. Therefore in the

initial phases of the integration, there were 800 points along the

vortex from (-tt). As t increased and the hairpin began to spread

to the side, the value of t was increased to i = 3 at t = 0.03 and

then to I = 4 at t = 0.06. The calculations are very time consuming

and were stopped at t = .072 when the general trends were evident.

In Figures 4.2(a), 4.2(b) and 4.2(c), the evolution of the

hairpin is plotted for case 1 in top, side and end views respectively; -.4

the vortex is drawn at intervals corresponding to every 40 time steps.
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Figure 4.2 - Temporal development for a hairpin vortex in a
stagnant flow. Case 1 (c=45*, A=0.5, a=20);

the vortex position is plotted every 40 time
steps (At=0.0002).
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It may be observed that the head of the vortex (corresponding to the

tip of the distortion) moves rapidly backward and after a brief

interval starts to move downward toward the wall. The rate of

movement of the head should be contrasted with the relatively slow

backward movement of the straight portions of the vortex; for

Izi > 3, the vortex moves basically in the velocity field of its

image and advances slowly upstream. It is evident that on the

curved portion of the filament, the vortex evolves in such a manner

so that high local curvature is rapidly diminished. As the head

bends back, the legs of the vortex curl backward in a counter-clock-

wise direction; the disturbance moves down toward the wall and

spreads to both sides. With the evolution of the legs, new second-

ary hairpin heads evolve to the side of the main distrubance. The

calculation was terminated at t = .072 since the general trend of

the disturbance is reasonably well established at this point; the

disturbance is expected to continue to propogate to the side as the

vortex evolves into a "cork-screw" shape.

In the second case considered, the same geometrical parameters

were used as in Case 1 with the exception that the amplitude of the

disturbance was doubled to A = 1.0 and the mesh size used was

As = 0.01. The basic development of the vortex is similar to Case 1

and is shown in Figures 4.3 at every 20th time step. It may be

observed in Figures 4.3(a) and 4.3(b) that the head of the vortex

pulls rapidly backward and the vortex begins to evolve into the same

type of "corkscrew" configuration observed in Case 1. The calcula-
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Figure 4.3 - Temporal development for a hairpin vortex in a
stagnant flow. Case 2 (a=45', A=1., s=20);
the vortex position is plotted every 20 time
steps (At=0.0002).
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tion was terminated at t = 0.028 since the evolution of the filament

was judged to be similar to Case 1.

In the final case considered, the effect of the initial angle .-

of the disturbance was considered by calculating a case where the

initial angle a = 00. The results are shown in Figures 4.4. Again

the vortex head bends abruptly back and the evolution of the vortex

becomes similar to the previous cases. Consequently in all cases, S

the initial distortion in the two-dimensional vortex was observed

to evolve into a "corkscrew" type of motion and the disturbance

spreads outward along the vortex. While the calculations were

carried out for a vortex in a stagnant flow, the same vortex

evolution would be observed in a uniform flow; if a uniform flow

is superimposed from left to right, the only difference in the evo-

lution depicted in Figures 4.2-4.4 would be that the vortex would

convect progressively to the right.

4.5 The Evolution of A Hairpin Vortex in Shear

In the previous section, the development of a hairpin vortex

in either a stagnant or uniform flow was considered; in this

section, the evolution of a hairpin vortex in a shear flow will

be addressed. The following background flow for these calculations

was assumed:

Ys Y < Ys

Uext = (4.21)

V " Y> Ys ,"
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Here V is the (dimensionless) uniform flow speed at large distances

from the wall and ys is the height of shear flow.

A series of these calculations were carried out using the

initial vortex configuration given by equation (4.4) with A = 0.5,

=450 and a = 20; the vortex core radius was a = 0.02. The

evolution of the vortex was tracked by computing the solution of

equation (4.6) numerically using equation (4.21). In all cases, the

dimensionless height of the shear flow was taken to be ys = 1.5; the

mesh size along the vortex was As = 0.01. Initially the spanwise
extent of s was taken to be at s = i= 2 and consequently there were

400 points on the vortex; as the hairpin vortex began to evolve in

the spanwise direction the value of z was progressively increased to

9.= 3 and then z = 4.

The first case for a vortex in shear will be denoted here as

Case 4 and for this situation, a uniform flow velocity (at large

distances from the wall) of V = 50 (to the right) was used; note that

the velocities near the head are about 25 units to the left (for the

initial configuration in equation (4.4)). The value of V selected

in this case is thus about twice the initial maximum self-induced

velocity. Results for Case 4 are plotted in Figures 4.5 every 20

time steps; the time step used was At = 0.0005.

It may be observed in Figures 4.5 that the distortion in the I
initial hairpin vortex grows as the vortex convects downstream in the

shear flow. The vortex head lifts away from the wall and eventually

rises into the uniform flow region. It may also be observed that the

-90-
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Figure 4.5- Temporal development for a hairpin vortex in a shear
flow (V=50). Case 4 (a=45* , A-0.5, s=20); the
vortex position is plotted every 20 time steps
(At=2 .0005). -91 -
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vortex legs move progressively toward the wall and that new hairpin

disturbances form outboard of the primary disturbance. It is

apparent that the shear flow has the effect of amplifying the

initial distortion as well as giving rise to additional hairpin

vortices on the initially undisturbed portions of the vortex. Cal-

culations of this nature are rather time consuming and were term-

inated at t = 0.1 for Case 4 since the general trends of the vortex

evolution were evident at this point.

In Case 5, the effect of increasing the shear rate was studied

by taking V = 150; the background flow (given by equation (4.21))

is now at higher speed and it was necessary to decrease the time step

to At = 0.0003 to obtain smooth development in the vortex trajectory.

The results are plotted in Figures 4.6. It may be observed by

comparison of Figures 4.5 and 4.6 that one effect of the increased

level of shear is to increase the rate of amplification of the

original disturbance as well as the evolution of secondary hairpin

vortices. The trend for the vortex head to lift out of the shear

flow (and then bend back) is evident in Figure 4.6(b) both for the

primary vortex head and the secondary hairpin vortex heads. The

tendancy for the hairpin legs to move toward the surface may also be

seen in Figures 4.6(b) and 4.6(c). It is also clear from Figure

4.6(a) that the increased level of shear gives rise to an increased

level of stretching along the vortex legs.

The last case considered corresponds to an even higher level of
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shear with V = 250 and is denoted as Case 6; in this case, it was

necessary to reduce the time step to At = 0.0002 in order to obtain

smooth results. Calculated results for the initial development are

depicted in Figures 4.7. It may be observed that the development is

similar to Case 5 but that the deformation of the vortex takes place

at a much faster rate. At t = 0.06, two secondary hairpins have

developed outboard of the primary disturbance, the legs of the

vortex move progressively toward the wall (Figure 4.7(c)) and are

relatively close to the wall at t = 0.06. In order to extend the

calculation to larger times, it was necessary to extend the computa-

tional domain from s = =3 to z = 4; a continuation of the sequence

for Case 6 is shown in Figures 4.8. It may be observed that the

bending back of the primary vortex head is now quite pronounced. In

addition, the vortex legs have moved very close to the wall; when the

integration was carried forward beyond the last stage depicted in

Figures 4.8, the vortex legs touch the wall after a few time steps

and the numerical algorithm terminated.

4.6 Discussion

The present results provide a detailed time history of the

evolution of a hairpin vortex both in an irrotational flow as well

as a shear flow. Some of the features of the flow development are

similar to those obtained by previous investigators. Perry and

Chong (1982), in an attempt to discribe the mechanisms of wall layer

turbulence,have described the evolution of "A-vortices"; such

vortices are meant to be a crude representation of hairpin vortices
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Figure 4.7 -Temporal development for a hairpin vortex in a shear
flow (V=250). Case 6 (at=45', A=0.5, B=20); the
vortex position is plotted every 30 time steps
(At=0 .0002).
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Figure 4.8 -Continuation of integration for Case 6; the vortex
position is plotted every 15 time steps (At=O.0002).
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and consisted of two finite-length straight vortex filaments

forming an inverted V shape above the wall. A numerical integration

based on the Biot-Savart law was carried out for such "vortices" in

a stagnant flow. Although this is a rather crude and questionable

representation of a hairpin vortex, the results of Perry and Chong

(1982) do show features similar to the detailed integrations

depicted in Figures 4.2 to 4.4; the tip of the A-vortex was -

observed to bend backward and the A was observed to flatten and

spread in the spanwise direction. The present integrations are based

on the full Biot-Savart law with a self-consistent representation of

the vortex core flow and provide a detailed record of the hairpin

development.

Aref and Flinche4 (1984) have considered the evolution of a

hairpin vortex in a shear flow near a wall using the localized

induction method due to Hama (1962). In this approach, the effect of

the image vortex below the plate was ignored and the self-induced

velocity at a point was computed from the contribution due to a

small arc of the vortex near the point; the effect of portions of the

vortex remote from the field point is neglected in the "localized

induction approximation". Despite these deficiencies, the calcula-

ted results of Aref and Flinchem (1984) do show an evolution of a

hairpin vortex in shear which shows some qualitative similarities to

the development depicted in Figures 4.5 to 4.8.

Recently, Moin, Leonard and Kim (1986) have computed the evo-

lution of a curved vortex using the Biot-Savart law; the vortex core
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was accounted for using an ad hoc model described by Leonard (1935).

Their calculations were carried out with relatively coarse mesh

sizes but do show some features that bear a similarity to some of

the detailed results obtained here.

The present results may be compared with experimental results

of Acarlar and Smith (1984, 1931a, 1987b); in these experiments,

hairpin vortices were created in a sub-critical laminar boundary

layer and the effects and motion of the vortices were observed as

the hairpins convected downstream. The vortex trajectories that

have been computed in this study are in broad agreement with the

behavior observed in the experiments of Acarlar and Smith (1984). The

heads of the hairpins were invariably observed to lift upward and

ultimately bend backwards. The evolution of secondary hairpin

vortices outboard of the original hairpin was clearly observed in

the experiments in agreement with the evolution shown in Figures 4.5-

4.8. Figure 4.9 is reproduced from the study of Acarlar and Smith k

(1984); in this sequence the hairpin vortex is moving toward the

observer and as it passes a hydrogen bubble wire was pulsed to

produce a line of bubbles within the flow. In this sequence, the

movement of the hairpin legs toward the surface may be observed

which is in qualitative agreement with the evolution shown in

Figures 4.5-4.8.

4.7 Influence of a Hairpin Vortex on Dye Markers

A common method of flow visualization is to introduce a
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Figure 4.9 -Flow vi-,ui Ii zajtiof, Seqiionce reprodUced from Acalar
and iith (1 9I4) showi eq a hdi rpi n vortex movi nq
toward the observer; the visualization is
accompl i shed wi th a Iiydroqjen bubbl1e wire.
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sequence of hydrogen bubble lines into the flow (in water) and to

observe their subsequent deformation. The wall-layer streaks in

a turbulent boundary layer are often considered to be the signature

of a moving hairpin vortex; this view is strongly supported by the

experimental studies of Acarlar and Smith (1984, 1987a, 1987b). In .

the present study, the evolution of a hairpin vortex in a shear flow

has been calculated and in this section, the influence of the moving

hairpin vortex on simulated hydrogen bubble lines in the flow will be

evaluated.

To carry out the numerical calculations, a total of 17 equally
S"

spaced lines were inserted in the flow field at the initial instant

for the vortex development of Case 6 depicted in Figure 4.7. A i., 5-

total of 51 mesh points were used on each half of each line. In the
.5.

first case considered, the lines were all at an initial constant

height of yo = 0.8 and were separated by a streamwise distance of .5.

0.25 units in the streamwise direction. As the hairpin vortex
.5 ,

evolved in the shear flow according to the development depicted in

Figure 4.7, the trajectories of the "bubble lines", were computed

numerically. A series of trajectories is shown in Figures 4.10 to

4.12 in top, side and end views; the current vortex position is

shown as a dotted line. It may be observed that the simulated

bubble lines are collected into two nearly parallel strips of

concentration; this behavior is closely consistent with the observed

results of Acarlar and Smith (1984) (c.f. Figures 3.21 and 3.25
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of that study) where horizontal lines of hydrogen bubble were

introduced at different levels above the wall to detect the typical

"footprint" of a moving hairpin vortex. 
',..-

A similar sequence is shown in Figures 4.13 to 
4.15 for the .. f'

"bubble lines" located initially lower at yo = 0.7. A similar

type of development may be observed.
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Figure 4.12 - The simulated hydrogen bubble lines due to a con- "
vected hairpin vortex (Case 6) at t = .07; initial 0-
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Figure 4.13 -The simulated hydrogen bubble lines due to a con-
vected hairpin vortex (Case 6) at t =.03; initial
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Figure 4.14 -The simulated hydrogen bubble lines due to a con- '

vected hairpin vortex (Case 6) at t = .06; initial

bubble lines were located at y = .7.
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Figure 4.15 -The simulated hydrogen bubble lines due to a con-
vected hairpin vortex (Case 6) at t =.07; initial
bubble lines were located at y =.7.
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4.8 The Velocity Signature of a Hairpin Vortex
..

As a moving hairpin vortex convects in a shear flow, it

induces distortions in the streamwise velocity profiles and in this

section, the nature of the induced flow will be considered briefly.

Consider first the situation corresponding to Case 4 of Section 4.5

and select a particular vortex configuration at t = 0.1; the side

view of the vortex at this stage of development is shown in Figure

4.16(a). At the eleven streamwise locations indicated in Figure

4.16(a), the instantaneous velocity fluctuation profiles are

depicted in Figure 4.16(b); these profiles represent the instantaneous

velocity fluctuations due to the hairpin vortex and were computed

using the Biot-Savart law. It may be observed in Figure 4.16(b)

that the velocity profile labeled 8 displays the largest negative

velocity fluctuation at about y = 1.5; as y decreases, the magnitude

of the fluctuation decreases. On the other hand, the velocity

fluctuation above y = 1.5 is positive and peaks near 1.75. The

abrupt and relatively large reversals in velocity fluctuations are

indicative of the presence of the vortex head. The actual instan-

taneous velocity profiles at each station are shown in Figure 4.16(c).

Another perspective on the nature of the streamwise velocity

induced bya moving hairpin vortex is shown in Figure 4.17 for Case

4. In this illustration, the instantanoous velocity fluctuations

were computed at a fixed streamwise location (at x = 4.29), in the

time interval t = 0.07 to t = 0.12 as the vortex convected past the

measuring station. The vortex positions at various times are shown

-108-
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in Figure 4.17(a) in side view and the instantaneous velocity

fluctuations are depicted in Figure 4.17(b) at time intervals of

At = 0.005. The corresponding velocity profiles are indicated in

Figure 4.17(c). It may be observed from Figure 4.17(b) that a

rather large velocity fluctuation occurs as the head convects past

the measuring station. As the hairpin head moves downstream there

is a negative velocity fluctuation near the wall at subsequent times

which gradually diminishes with increasing time.

A set of instantaneous velocity profiles for Case 6 of Section

4.5 at fixed value of t are shown in Figures 4.18; this case cor-

responds to the largest shear rate considered and the instantaneous

shape of the vortex in side view is plotted in Figure 4.18(a) at

t = 0.078. Again the abrupt reversal in sign and the relatively

large values of fluctuating velocity are an indication of the pre-

sence of the head at station 11. Note that in this case the vortex

legs have moved relatively close to the wall at this stage and induce

a relatively large negative velocity at the wall (profile 1 in

Figure 4.18(b)). In Figures 4.19, the velocity fluctuation due to

the moving hairpin vortex are shown as the vortex convects past a

fixed measuring station at x = 9.2; the fluctuations are plotted in

the interval t = 0.03 to t = 0.075 in Figure 4.19(b). Again the

strong sign reversal in the velocity fluctuation may be observed as

the hairpin head passes the measuring station. As time increases,

a negative velocity fluctuation is observed with a peak that moves

gradually toward the wall. At t = 0.065, the trailing portion of the

-112-
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legs are near the measuring station and the negative fluctuation is

at a maximum near the wall. With the passage of the hairpin vortex,

the velocity fluctuation at the wall decreases.

The velocity distribution due to a hairpin vortex moving in a

shear flow close to a wall has been determined recently through use

of image processing techniques (Lu, 1987). In this approach, the

velocity profile and streamwise velocity fluctuations were obtained

at a single measuring station by digitizing the high-speed video

sequences of the hydrogen bubble-line patterns released by a bubble

wire oriented normal to the wall. By comparing the results from

successive video frames, it is possible to determine the instan-

taneous streamwise velocity distribution at the bubble wire (Lu and
Smith, 1985). In the experiments of Lu (1987), this process was

applied to hairpin vortices shed from a hemispherical protuberance in

P a subcritical laminar boundary-layer flow on an otherwise smooth

wall. Some results from Lu (1987) are shown in Figure 4.20 for the

streamwise velocity and streamwise velocity fluctuations which were

recorded as a hairpin vortex passed by the hydrogen bubble wire.

The sequences shown in Figure 4.20 shown successive profiles with

time increasing from left to right. The trends in these results

are qualitatively similar to that shown in Figures 4.17(b), (4.17(c)

and 4.19(b).

4.9 Interaction of two Hairpin Vortices

In the previous section, the motion of a single hairpin vortex .1
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above a plane wall was considered. In this section the evolution of

two interacting hairpin vortices is addressed.

For two hairpin vortices above a plane wall, the generalization

of equation (4.6) is,

4.-

a Xk 9 --
St :j, (s lSt) + ext "  (4.22)

Here k =1,2 since there are now two hairpin vortices; s denotes a

point on vortex k and the I for j = 1,7 are given by equations

(4.7) through (4.20) for integrations along vortex k. In addition,

the background flow u ext is given by the shear flow in equation

(4.21). The two additional terms in equation (4.22) represent the

integrations along the second vortex and are given by,

4. k' k k

I- x ds,S = a Xk--Xk, 13

I x - k' ds. (4.23)19 f - x ' I

ix k-X k' image
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Here k' denotes the second vortex and the second integrand inI
equations (4.23) is evaluated along the image of vortex k'.

The numerical method used is similar to that described for the

single hairpin vortex. At each stage in the 4th order Runge-Kutta

method, the intermediate location of each hairpin was computed; the

calculation then passed on to the next sub-step and the process was

continued until a complete time step had been taken. Note that the

computing time for two hairpin vortices is approximately four times

as great as for a single hairpin vortex. Because of the relatively

long computing times, calculations were carried out for only one

computed in Case 6 (c.f. Section 4.5) with the second vortex

positioned slightly ahead of the first. The initial configuration is

shown in Figure 4.21; the first vortex is labeled H1 and is initially

located slightly behind the vortex labeled H2. The evolution of

these two vortices was then computed numerically; there were 600

nodal points on each vortex and the time step used was At = 0.0001.

The development of the hairpins is shown in Figure 4.22 after

100 time step at t = 0.01. It is evident that both vortices have

been stretched in the shear flow; however, the legs of the leading . -

hairpin H2 have moved closer together under the action of the hair-

pin HI as well as beina lifted (Fiqure 4.22(b)). The next stage of

development is shown in Figure 4.23 where it may be observed that .p

the interaction of the two vortices has continued. The trailing -
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Figure 4.21 - Initial configuration for two hairpin vortices in shear.
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legs of H2 have now passed underneath the trailing part of HI; the

middle portion of the legs of H2 have passed upward between the legs

of vortex HI (Figure 4.23(b)). The continuation of the interactionU may be observed at the 300th time step at t = 0.03 in Figures 4.24

and then at t = 0.4 at the 400 time step in Figures 4.25; the cal-

culations were terminated at the 480 time step and the vortex con-

figurations are shown at this stage in Figures 4.26. It may be

observed from these figures that the vortices tend to intertwine and

then reinforce one another, particularly along the vortex legs. At

the stage shown in Figure 4.26, the two vortices are relatively close

to one another and the calculation failed shortly thereafter. The

reason for this is believed to be due to the fact that the vortices

were so close that the vortex cores were touching. Once two vortex

cores approach this closely, it is necessary to consider a local in-

teraction region where viscous effects are important and where the

flow development is described by the full Navier-Stokes equations.

Such a calculation has recently been carried out by Weston, Ting

and Liu (1986) and by Liu, Ting and Weston (1986) for merging vortex

rings. This type of calculation is extremely complicated and is

beyond the scope of the present study. However it is worthwhile to

note that when the interaction on merging of vortices occurs, the

vortices merge in interaction zone and then recombine and break apart.

The processes involved are clearly complex and not well understood.

The interaction of a pair of hairpin vortices has been

observed experimentally by Acarlar and Smith (1984, 1987a, 1987b).
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Hairpin vortices which were shed from a hemispherical protuberance

located on the wall in a subcritical laminar boundary layer were

marked with dye and the evolution of the vortices was observed as

the vortices convected downstream. A development similar to that

depicted in Figures 4.21-4.26 was clearly observed in the experi-

ments. The legs of the older leading vortex were observed to

stretch in the shear flow but then to move together under the

influence of the trailing younger vortex and subsequently lift

through the legs of the younger vortex. The process of vortex

intertwining was clearly discernible in the experiments (c.f.

Figures 3.19 and 3.20 of Acarlar and Smith, 1984).
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CHAPTER 5

THE BOUNDARY LAYER INDUCED BY A MOVING HAIRPIN VORTEX

5.1 Introduction

In Chapter 4, the trajectories of hairpin vortices were calcu-

lated for situations where the hairpin was convected in both a uni-

form flow and a shear flow above a wall. In this chapter the nature

of the unsteady viscous flow induced at the wall by the moving hair-

pin vortex will be considered. The motion of the hairpin vortex

gives rise to an inviscid velocity distribution near the wall which

varies in the streamwise and spanwise direction and which changes

with time; near the wall, a three-dimensional unsteady boundary-layer

flow develops with time. The full three-dimensional boundary-layer

problem is complex and a successful treatment of such problems would

require computational resources far beyond what was available in the

course of the present investigation. Consequently a method was

developed to study the boundary-layer development but only on the P

plane of symmetry of the moving hairpin vortex.

The plan of this chapter is as follows. In Section 5.2 the

nature of the inviscid velocity distributions due to the moving hair-

pin vortex on the symmetry plane is examined. The boundary-layer

problem is formulated in Section 5.3 and a set of transformations for

the boundary-layer problem is described in Section 5.4. A discussion

of the numerical methods used is given in Section 5.5 and calculated

results for one case are described in Section 5.6.
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5.2 The Inviscid Velocity Distribution

In Chapter 4, the three-dimensional evolution of hairpin vortices

was computed tnrough a numerical integration of the Biot-Savart law. IN

At any instant, the inviscid velocity induced by the hairpin vortex

is given by,

a Xh  (Xo-)
u (Xot) = sgn(r)[ f _--- x o dsc. _oo 0 X _h13 "'-

D (XXo- Xi

-f x ds] (5.1)
- 1Xo-X 0 3

Here X is a vector to any location within the flow which is not

located on the hairpin vortex. The vector,

Xh Xhl + + Zhk (5.2)

is to an arbitrary point on the hairpin vortex while the vector

Y

Xi= Xhl - h + zh , .3)

is to the corresponding point on the image vortex. In equation (5.1), ,A

the first and second integrals are the contributions of the hairpin

and its image respectively to the induced velocity field at Xo.

Now consider the inviscid flow distribution near the wall which

corresponds to taking the limit y - 0 in equation (5.1); near the

wall the position vector is, I
; ~- 1 3 3 -_ -''

~.'."



Xw xi + zk (5.4)

and if the inviscid velocity distribution at the wall is denoted by,

Uw Uw(X'z't)i + W (XZt)k ' (5.5)

it may readily be shown that,

ayh+ azh

Uw(x,z,t) = 2sgn(r) (z2s3/s ds , (5.6)_ x )2{(XXh( 2+ 2+(Z )

-,.-

~ axh{(x-x h  + h

Ww(X,Z,t)=- 2sgn(r)f { Yh- s+ }.ds (5.7)
-(x-x Z+yh 2+(ZZ )2}3/2}

h z~h z-h

The form of the velocity components near the symmetry plane is

obtained by taking the limit z - 0 in equations (5.6) and (5.7); the

quantities xh, Yh and azh/as are even functions of s while zh,

3xh/as and ;yh/as are odd functions of s. Denoting the limit of

Uw as z 0 by U (x,t), it is easily shown from equation (5.6) that

Zh a 11",
{47h z h  .

Uj(x,t) = 4sgn(r) f - +Z hs2h3/2 ds (5.8)0 {(X-X h)2 +yh 2+Z232
o

As z + 0, Ww 0 but aWw/az is nonzero; defining e,(x,t) by,

wW w-e

0 (xt) =lim z (5.9)

so that,
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Ww  ze(x,t) + as z 0 , (5.10)

it may be shown using equation (5.7) that,

-L "1y -a{Yhs- + (X-Xh)-} .I e(x,t)= 12sgn(r) f +yh 2h 5/2 ZhdS (5.11)

o ,~- y'Z

It is evident that distributions of U (x,t) and o (x,t) may be [...%

evaluated at any instant by carrying out the indicated integrations

in equations (5.8) and (5.11) for several values of x. This was '

accomplished as follows. For a fixed value of x, the integrations in

equations (5.8) and (5.11) were carried out for Isl < z using a

numerical integration based on Simpson's rule. For Isi > 9., the

vortex was assumed to be a straight line filament and thus,

aXh _aYh 0- (5.12)
as as as

The portion of the integral in equation (5.8) for s > z may be evalu-

ated by exact integration using,

SYh 
Yhz {(X- 7X-X h ) +yh

{(XXh)2+yh+zh2} 3 / 2

zh{+ - (5.13)

{(x-xh) 2+yh+Zh

while the integrand for s k in equation (5.11) vanishes.
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As examples of the nature of the U and 6 distributions, two

extreme cases are considered here. The first was denoted as Case 6

in Chapter 4 and corresponds to a hairpin vortex embedded in a strong

shear flow; the temporal development of the vortex shape was given in

Figure 4.7. In Figure 5.1, the distribution of U (x,t) is depicted

at various stages during the evolution of the vortex. At t = 0, the

streamwise velocity distribution shows a region of strong decelera- a
tion and then acceleration near the wall; in this case, all values of

U are negative. Note that for the case considered in Figure 5.1,

the basic shear flow is zero at the wall; if the shear flow were such

that the inviscid flow is reduced (through a region of uniform shear)

to a finite but non-zero velocity at the wall (say U ), then the

only difference in Figure 5.1 would be that all distributions are

relative to U0 rather than 0.

As time increases, the vortex head moves progressively away
from the wall and the maximum inviscid speed near the wall induced

by the hairpin diminishes slightly. At a later stage (t = 0.04), •

the hairpin head has moved further from the wall but has also moved

further downstream as the vortex is stretched out in the shear flow;

the influence of the hairpin head at t = 0.04 may be seen in Figure

5.1 where a distention has developed in the velocity distribution

near x = 11. For increasing t, this distention amplifies as may be

observed at t = 0.05 near x = 14, at t = 0.06 near x = 15 and then

near x = 18 at t 0.07; this effect is directly associated
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,' with the moving vortex head and this may be confirmed by comparing

Figures 5.1 and 4.7. At the later stages depicted in Figure 5.1,

additional distentions develop in the inviscid velocity distributions

and the origin of these can be understood from Figure 5.2. As the

* vortex begins to develop secondary (and then tertiary) heads which are

then convected downstream, local minima will develop in the streamwise

velocity distribution; for example the local minimum near x = 12 at

t = 0.06 (and near x = 13 at t = 0.07) is associated with the instan-

taneous location of the secondary head. One final feature of the

distribution in Figure 5.1 is worthy of note; at t =0.06 and then at

t = 0.07, the maximum inviscid speed has increased. This is believed

to be due to the influence of the primary leg (see Figure 5.2) as it

*, moves closer to the wall (c.f. Figures 4.7).

The evolution of the spanwise velocity is depicted in Figure

5.3 where o(x,t) is plotted at various stages during the process.

It may be observed that, as the hairpin is stretched in the shear and

convects downstream, there is a spanwise inflow toward the symmetry

plane of increasing magnitude (0 <0). Essentially this behavior is

due to the movement of the legs toward the wall. It may be observed

that the o- distribution is developing a complicated form by t = 0.06.

It is worthwhile to note that the n distribution is not entirely

negative and changes sign (even at early times) at an x-location to

the left of the minimum. One other feature of interest is that by

t = 0.06 the region over which a significant 0 occurs has expanded

in the streamwise direction considerably as the vortex stretches out

S-138- v-.
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head

Tertiary head

secondary head

primary legs

Figure 5.2 -Schematic sketch of a hairpin vortex
after deformation in a shear flow.
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in the shear flow; at this stage, there is a significant in the

range 9 < x < 18 and to some extent, the spanwise flow is similar

to that induced by a pair of counter-rotating streamwise vortices.

The second case considered here corresponds to the hairpin .J*

vortex evolving in an otherwise stagnant flow above a plane wall;

the trajectories of the vortex for this case were plotted in Figure

4.2. The temporal evolution of U (x,t) and o (x,t) are plotted in

Figures 5.4 and 5.5. Note that the changes in these distributions

are rather less dramatic compared to the situation when the hairpin

vortex is in shear. For a purely two-dimensional vortex, the

absolute minimum in U would be at -4 and thus the effect of the

three-dimensionality of the vortex is to slightly weaken the Ur,

distribution. If the same hairpin vortex were placed in an otherwise

uniform flow above the wall, the only change from Figures 5.4 and

5.5 would be that the distributions would be convected to the right.

5.3 The Boundary-Layer Problem

The boundary layer that develops near the wall below the moving 0

hairpin vortex is unsteady and fully three-dimensional. Let a rep-

resentative length be d (the distance of the undisturbed straight

line vortex from the wall) and take the representative velocity to be

Vc = k-/2d corresponding to self-induced convection speed of the

straight part of the vortex at large distances from the hairpin.

The Reynolds number for the vortex flow is defined by,

Re 12v (5.14)

0-141-
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If (x,y,z) are dimensionless Cartesian coordinates with corresponding

velocity components (u,v,w), a scaled normal coordinate and velocity

in the boundary layer are defined by,

1/2  , 1vl/2
y , v' = vRe , (5.15)

and the three-dimensional unsteady boundary-layer equations become,

+ + w - - - +w  (5.16)

+w 9w A w ax w

- w-+- 1w +U +- + , (5.17)t D-x +  I v z 5t + w x + w z T ,--:

+ + 0- 0 (5.18)3x y T .- .

where U and W are the inviscid velocities defined in equations (5.6)

and (5.7).

The numerical problem associated with the full three-dimensional

boundary-layer flow is very complex and would require computer re-

sources which were not available in the present study. However the

boundary-layer flow on the symmetry plane z = 0 develops indepen-

dently of the rest of the boundary layer. The flow near the symmetry

plane gives some insight into the nature of flow near the wall and

consequently is of interest here. Both u and v are symmetric about

z 0 while w is an odd function of z; specifically,

w z O(x,y,t) + as z 0 (5.19)
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where e is a function to be determined. Substituting equation (5.19)

into equations (5.16) - (5.18) and taking the limit z - 0, leads to

the special form of the boundary-layer equations on the symmetry

plane, viz.

-- + + U . + (5.20)-- -I -+ --- '-+-

36 30 2e .
e + u 1 0 - + V e + 2  = + U - + o 2 + 2 I ( . 1

t 6 7 ' x (5.21)

_ U + aV,5u yr + 0 = 0 (5.22)

In normal circumstances it is convenient in a numerical solution

of unsteady boundary-layer equations to write the streamwise velocity

for example, in the form

u = U(x,t) F(x,y,t) (5.23)

The function F is then a normalized velocity which varies from zero

at the wall to one at the boundary-layer edge; the procedure is

successful when U is such that there are no zeros in U for all x

and t. It was mentioned in Section 5.2, that U is negative for all

x and t; this may be confirmed with reference to Figure 5.1. The

distribution of e however is somewhat more complex; it may be

observed in Figure 5.3 that o is predominantly neqative but even- O

tually develops a region of positive values (and two zeros) as the

S-145-
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legs of the hairpin approach the wall. It is convenient to obtain a

decomposition of e. of the form,

(x,t) = o1(xt) + 02(xt) , (5.24)

which is such the e1 and e2 do not have zeros for all x and t.

Presumably there are a variety of such decompositions; however due to

the complex nature of the evolution of 0. (c.f. Figure 5.3) it proved -"

difficult to find a suitable decomposition which was valid for all t

of interest. The following decomposition was obtained by trial and

error:

f(x-x )2+3}/2 .
01(xt) = J (5.25)

o {(X-Xh)+yh +zh2}5i2

e2(xt) : e(xt) - el(xt) (5.26)

Here the subscript h denotes coordinates along the hairpin and x (t)
is the instantaneous location of the undisturbed two dimensional por- .

tion of the vortex (at large distances from the hairpin disturbance).

The temporal evolution of 81 and e2 are depicted in Figure 5.6 when ... ,

it may be observed that 01 is positive for all (x,t) while 62 is .

always negative.

Returning now to the boundary-layer equations on the symmetry
"0

plane, it is convenient to introduce a functions (x,y,t) and

,p(x,y,t) defined by,
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o = , ,(x,o't) 0 , (5.27)
,w..:

and

U v = - , (x,o,t) = 0 (5.28)y Dx

The continuity equation (5.22) is identically satisfied using

these variables; note however that 4(x,y,t) is not a streamfunction

and that it is not possible to define a streamfunction in a three-

dimensional flow.

5.4 The Transformed Boundary-Layer Problem

The streamwise coordinate x ranges from - to and it is con-

venient to transform to a new variable c defined by

x-x (t)+ --'
= 2 tan-1{ z (5.29)

' 7,

Here xQ(t) represents the instantaneous streamwise location of the

undisturbed two-dimensional portion of the vortex; this transforma-

tion is one-to-one and transforms the doubly infinite range in x to

the range (-1,1) in r. The factors of 7 in equation (5.29) were

chosen for convenience with the objective of transforming the stream-

wise position of the trailing legs of the hairpin vortex to near

= 1/2. Generally one objective of a transformation like equation

(5.29) is to expand or magnify regions where the streamwise velocity

distribution is undergoing severe variations. In the present problem,

0
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this is difficult to accomplish, as may be inferred from Figure 5.1,

since the locations of severe variation are constantly shifting in O-

time. The transformation in equation (5.29) is tied to the moving

two-dimensional part of the vortex but as the hairpin legs begin to

move near the surface, a region of intense streamwise velocity

develops at values of x increasingly less than x = x,. The trans-

formation (5.29) does a reasonable job of keeping this range near

1/2 in the latter stages of the integrations. It was found by

trial and error that the form of the transformation (5.29) was very

important; furthermore unless particular care was taken to properly

expand the regions of intense variation in U. and 0., significant

inaccuracies occurred in the numerical boundary-layer solutions.

In the calculations that will be reported here it was assumed

that the effects of viscosity become important near the wall

abruptly at t = 0; for all t 0, a thin unsteady boundary-layer flow

develops near the wall as the hairpin vortex evolves in the shear flow

above the wall. In view of this "impulsive start" condition, it is

necessary to define a new scaled normal coordinate by

Y , (5.30)

which takes into account the fact that the boundary layer initially

112
thickens proportional to t In addition, the streamwise velocity

and spanwise velocity gradient in the boundary layer are written 
*.

according to,

-149- 0

04.'



u U erfn + (5.31)
T] 1 2

Here the functions Y and are related to the original functions

and @ by,

= 2,T UY , , = 2 o{01 1(n) + 02;} (5.32)

and I(n) is the integral of the error function given by, -S

(n) f erfndn nerfn + 1(e-1) (5.33)

0 T %,#

The vertical velocity v may be obtained by substitution of equations

(5.32) into the second of equations (5.28) and,

~ °-U,-

v = -21t {01I(n) + 62 + ( -D -- + U (5.34)

The functions Y and ¢ are subject to the boundary conditions,

I ' . . . 0 at n = 0 , (5.35)

T Th

for all ( ,t) at the wall and at the boundary-layer edge,

l im 1mli 1 , (5.36)

for all (&,t).

Under these transformations, the streamwise momentum equation

along the symmetry plane becomes,
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2-U 4t-- + RxU + Qx + Gx (5.37),'
At n + Px x .-.

where, <'

B ,' ,.#

U - (5.38).*

and the coefficients in equation (5.37) are given by, .'-

P x 2n + 4tV ,.

4t ;U- v U U-"

R + + U U57

Rx :-U.(x,t) + lt + x - ';:
(5.39)

*1.

Qx -4t + U U

x
( TX ' -

G t UL + Ux U,x,t) F, t + t Dr x -

Here V is given by,

A0
V =li(,,) +O2 + - " + U 9- 4ri (5.40)

The spanwise momentum equation assumes a similar form with,

3 2 T + p R + + (5.41)

4z t-+ z z G- z

where,

"(5.42)
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and the coefficients in equation (5.41 ) are given by,

PZ 2n +4Vt

R 4t 302 ~6+
T- - +U. +2y erfn '2'}6 2 C)t 9 t 1

4t f t 11)

4t 3~V 0~ 1 9
G {- rf, + ~w~ rf, + U U -- ~rfr (5 .43)

z~ ~ 6-- - tt

~( + "2-)- ( e)2 Uj + 2)7
1 t 12 F * Ij x

Note that U, 6.1 and e62 in equations (5.37) through (5.43) as well

as their derivatives with respect to T and t, are to be regarded as

known functions of c and t which may be evaluated from equations

(5.8), (5.25) and (5.26); in addition, the terms :i /-x and ;-/UA may

be evaluated by differentiation of equation (5.29), viz.

_ 2 2dx /dt
Yx - '+(X-X +7) 2 

' t 2+(x-x +')' (5.44)

where dx 2/dt is the speed (in the + x direction) of the two-dimen-

sional part of the vortex. For a given value of r and location x (t),

equation (5.29) may be solved for x and the derivatives in equation

(5.44) may be computed.

The boundary conditions for equations (5.37) and (5.41 ) are
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1]=+=T =  at -0-
(5.45)

U, T-+l as n-

In addition, as x ± (+l), the solution of the boundary-layer

equations develops independently of the solution for x< ,u (j,'i.1).

It may be verified from equations (5.8), (5.11), (5.25) and (5.26)

that U., o1 and o2 are all O(x ) as lxl-; it also follows from
1 2~

equations (5.44) that the gradients r/ x and wl/)t are O(x -2) as

txt-o. Consequently it is easily confirmed that the limiting values

of the coefficients in equations (5.39) and (5.43) are,

Px' = PZ = 2 J , Qx- = zc = 0 , I
(5.46)

Gx = R = 4tAl(t )  Gz= -Rz 4tBl(t ) ,

where Al(t) and Bl(t) are defined by,

Alxt) =lim l d: ds: h

(5.47)

Bl(t) = lim t z dsdi) s hIxli d 0

Therefore if the solution for U( ,,,,t) and 1(,i,t) at = l

(x++) is denoted by 0 and -, then these functions satisfy the

equations

4t = + 2,,-7 - 4tAl(t)U + 4tA l(t)

4t - + 2,1 4tB (t) + 4tBl(t) ,
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and the boundary conditions (5.45)

The boundary-layer flow was assumed to develop abruptly from

rest corresponding to the insertion of the hairpin vortex in the

shear flow at t = 0. As t - 0+ , the limitina form of enuations

(5.37), (5.41) and (5.43) is,

4t _ + 2r Ut : "'fl "-
, ~(5.49) "'

4 t + 2,1

~t r)

and the solution of these equations satisfying conditions (5.45) is,

U = = erfn (5.50)

5.5 Numerical Methods

The numerical methods used in this study are similar to those

described by Ersoy and Walker (1985b). Starting from an initial

location, the evolution of the hairpin vortex was computed usinq the

methods outlined in Chapter 4; the results of this calculation were

stored on disk and a boundary-layer integration using a Crank-

Nicolson method (Ersoy and Walker, 1985b) was initiated. The initial

boundary-layer flow is described by equations (5.50) and to advance

the solution in time the following procedure was used. The solution

at 1 was first advanced one time step by advancing the solution

of equations (5.48); with the solution at 1 known for a qiven

value of t, the solution of equations (',.37) and (f .4) was then-
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advanced one time step. Central difference approximations were used .

for the spatial derivatives and the method is second order accurate

both in space and time. The numerical method for the interior cal-

culation (-l<C<l) is implicit and at a given time step iteration is

required; typically 15 to 20 sweeps of the mesh were needed at each

time step to obtain convergence which was deemed to have occurred
4-

_- when two successive iterates for U and T agreed to within four sig-

nificant figures at each mesh point. A typical time step used was

At = 0.0002 and typical spatial mesh sizes were hI = 0.01 in the
-A

direction and h2 : 0.05 in the , direction. The last of conditions

V_ (5.45) were applied at a value of r, = = 6 as an approximation and

this was believed to be large enough to ensure that there would be

no significant change in the solution with a larger value of ;. Con-

sequently in a typical calculation there were 201 mesh points in the

F direction and 121 in the direction normal to the wall; these mesh

sizes are believed to be small enough to ensure good accuracy.

The results of the computations are subsequently depicted

d through three types of plots, namely: (a) instantaneous streamline

plots in the xT, plane, (b) plots of lines of constant - in the x.,

plane and (c) limiting surface streamlines in the xz plane near the

symmetry plane of the hairpin vortex at z 0. The methods used to

plot these results are described in detail by Ersoy and Walker J19S5b)

*, but will be discussed briefly here.

As a result of a completed boundary-layer inteqration, values of

u and v are known at each time step at each point in a rectangular

*1 .*--'S

,, --4-.'4-"-.1,-A

V V,. .' .' °. ,- -. ' . .- .. ,. ., . - , .- ,-.. ,,,",. ,' ,",, , %-,, , , '- - . - -. - -j .. .. .o,



mesh covering the x' plane. In general, the equations of an

instantaneous streamline are given by,

dx dz
_ .. . . d (5.51)"m.U V W "

where is a parameter measuring distance along a given streamline.

A numerical approximation to the first of equations (5.51) is

V

x-x 0  uo- , - o , (5.52)

000
where (uo, vo ) are the "nstantaneous velocities at an arbitrary ""

initial p..nt (xo,r,o) at fixed time t. By selecting a step -, the
0 0

streamline through the initial point may be traced in the x- plane at

time t; since the spatial mesh sizes h1 and h2 are small it is

possible to compute accurate values of u and v at any point in the

plane using two-dimensional linear interpolation. In order to ensure

a smooth tracing, the step length Ac was selected so that (Ersoy and

Walker, (1985b),

(u2+v2) At 0.005 (5.53)

at any stage.

The lines of constant t' were obtained in a standard way. The

third type of plot which will be described are limiting surface

streamlines in the xz plane; at locations close to the symmetry

plane, the u and w velocity components are given by, A]
-156-
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U : U(X,y,t) + O(Z 2 )  , w : ze(x,y,t) + O(z3), (5.54)

where the right sides of equations (5.54) are the synmmetry plane

quantities computed in this study. For small z, equations (5.54)

provide a reasonable description of the flow field near the sym-

metry plane. Near the surface, v is O(y2 ) while u and w are 0(y).

-" thus for small y the streamlines are described apnroximately by,

dz dx _ dT y<<l (555)
ze u

where is a variable measuring distance along a streamline. In the

present study, the limiting streamlines were plotted using values of

u and e at y = h2 = O.05 which is one mesh length off the surface.
2•

Note that it is not possible to clearly delineate a specific range of

.- values of z for which equations (5.54) give a good representation

of the velocity components; the maximum value of z used here was

z = 0.1. It is also worthwhile to mention that an alternate repre-

sentation of the limiting surface streamlines is to formally take the

.4 limit as y 0 in equation (5.55) to obtain,

zd dx i e( x,y,t) f(xt) (5.56) iii
Y'-0

where

_ y=O (5.57)
f(xt) = ",u/ y1y=O -i

Integration of equation (5.56) yields, "

0
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z = Z0exp {f f(f,t)d } , (5.58)
xo  6
X0

where xo and z are constants. In principle the limiting surface

streamlines may be plotted using equation (5.58); in the present

study, it was convenient to use the same methods that were used to

plot the streamlines on the symmetry plane to plot the limiting sur- I
face streamlines (using equations (5.55)).

5.6 Calculated Results

The computation of the developing boundary-layer flow on the

symmetry plane is very time consuming and each case involved on the

order of several days on a VAX 8300. The problem is complicated by

the fact that as the hairpin moves, the regions of intense variation

in the e. and U. distributions constantly shift with time and con-

siderable effort had to be expended in finding a suitable transfor-

mation of the form (5.29) which would reflect the vortex behavior in I
a specific case. In the calculations that will be reported~there
were 201 mesh points in the c direction (h = 0.01) and 121 points

in the n direction (h = 0.05). Even with the large number of points2

in the direction, it was determined that unless the transformation

(5.29) was adjusted to a specific case, that "wiggles" would develop

in the computed results as the vortex began to severly deform in the

shear flow; these "wiggles" were thought to be a clear indication of

an inadequate streamwise mesh spacing in particular regions of the "

flow. Due to the considerable difficulties that were experienced in

0
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calculating the boundary-layer evolution, a limited number of

reliable results were obtained in the computational time available

and results will be reported here for only one case. This situa-

tion corresponds to Case 6 of Section 4.5 and consists of a hairpin

vortex convected in a shear flow above a boundary-layer flow near a

wall. The cases involving a vortex deforming in an irrotational flow

were not considered interesting and most of the effort here was

directed toward the situations involvinq vortices in shear. The time-

step used in this calculation was At = 0.0002. In the early stages

of the integration, the difference equations were solved with

successive-over-relaxation iterative methods; at later times, it was

found that under-relaxation was more effective in obtaining a

converged solution of the difference equations at each time step.

The flow development at t = 0.001 is depicted in Figures 5.7.

In these graphs (and all subsequent graphs) the polygonal symbol at

the top of the graph denotes the instantaneous streamwise location " §
of the hairpin head on the symmetry plane; the triangle denotes the

streamwise location of the undisturbed two-dimensional vortex. In

Figure 5.7(a) the arrows denote the instantaneous direction of flow
in the symmetry plane where it may be observed that the flow is

initially almost symmetric. In Figure 5.7(b) the contours of con-

stant 0 are plotted; positive values of e mean that the local span-

wise flow is away from the symmetry plane while negative values of .

show that the vortex is inducing a fairly strong inflow toward the

symmetry plane. The limiting surface streamlines in the xz plane

- 159- 9'..9
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are shown in Figure 5.7(c) where again, the flow direction is

indicated by arrows.

A further stage of development is shown in Figures 5.8 at

t = 0.01. It may be observed that a region of three-dimensional

flow separation is now present; there are two stagnation points,

labelled Si and S2, associated with this region. Fluid particles

in the region bounded by the limiting streamlines through Sl and S2

spiral toward a focus at F1 where the instantaneous flow is leaving

the symmetry plane. In Figure 5.8(b), it may be observed that a

new feature in the constant 6 contours has developed in the form of

a pocket of positive 0 near the wall. The increasingly positive

values of 0 near the center of this region indicate increasingly

strengthening outflows from the symmetry plane; the center of this

region is close to the focus Fl in Figure 5.8(a). The limiting

surface streamlines at t = 0.01 are shown in Figure 5.8(c) where it

may be observed that limiting streamlines through Sl and S2 divide

the plot into three regions. In the right of Si, the flow first

moves toward the symmetry plane but is then deflected away toward

the limiting streamline through SI. To the left of S2 the flow

is toward the symmetry plane while between S2 and Si the surface

• low reverses direction.

As time increases the region of three-dimensional separation

increases in extent in the streamwise direction as may be seen in

Figure 5.9(a) at t = 0.02; the stagnation point Sl remains almost

fixed relative to the moving hairpin vortex while the stagnation
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point S2 moves progressively downstream to the left. It may also

be observed (in Figure 5.9(b)) that the region of positive outflow

from the symmetry plane near the wall is expanding. The expanding

region of recirculating flow is also apparent from the relative

position of the stagnation points in the surface streamlines at

t 0.02 in Figure 5.9(c).

The continuation of the trends observed in connection with

Figures 5.9 may be observed in Figures 5.10 at t = 0.03. Note that

an intense variation in the velocity field is beginning to develop

to the right of the region of separation (Figure 5.10(a)) and also

that the streamlines to the right of Sl are beginning to lift away

from the wall (in response to the development of the secondary hair-

pin heads in the spanwise direction). The next stage of development

at t = 0.04 is shown in Figures 5.11; with the arrival of the trail-

ing legs of the hairpin, the streamlines that were observed to have

been lifting in Figure 5.10(a) are now seen to be accelerated in

Figure 5.11(a) to the right of Sl. Note that the region of recircu-

lating flow has expanded to the extent that the stagnation point S2

has now moved out of the picture to the left in Figures 5.11(a) and

5.11(c). In addition the surface streamlines near Sl are essentially

tangential to the symmetry plane.

The flow development at t = 0.05 is depicted in Figures 5.12;

the region of recirculation, depicted in Figure 5.12(a), has con-

tinued to expand and has grown substantially in the direction

normal to the wall. The intense variation in the flow field to the
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right of SI is evident from the relative closeness of the stream-

lines there. It may also be observed in Figure 5.12(b) that a pro-

nounced hump has developed in the constant e contours to the left of

Sl; an additional lifting in these contours may be observed to the

right of Sl.

The development at t = 0.06 is plotted in Figures 5.13. It S.

may be observed in Figure 5.13(a) that the recirculating region has .S
extended out of the plot window in a direction normal to the wall.

The streamlines to the right of S1 are very close to the wall and it

may be observed from Figure 5.13(c) that at this stage (at least)

there are no stagnation points to the right of Sl. It may also be

seen that the kink in the constant e contours which was noted in
m.

Figure 5.12(b) has now extended all the way across the boundary
5'

layer. Consequently there is a narrow band of outflow from the

symmetry plane which extends all the way to the inviscid region and

which forms in response to the development of a small region of

positive e (c.f. Figure 5.3).

The last stage of the present calculations is shown in Figures

5.14 at t = 0.07. At this point, there are now two additional

stagnation points S3 and S4 which may be observed in Figures 5.14(a)

and 5.14(c). The limiting streamlines through S3 and S4 bound a

region of strong outflow from the wall which is fed by spanwise flow

toward the symmetry plane. Note that an additional small region of

positive e may be observed to the right of S1 in Figure 5.14(b).

It may be observed in Figure 5.14(b) that "wiggles" are starting

-177-

I . . . . . . ... 5 %



414

4-).

4-)

LA-A

o
CS.'

7

-178-



- - -. Ww wwwft

Or

CD'

4-)

U") r_) 4

0

CDU

.5.'
____ _CD_ o

LOn

LC)

-179-



%, ,.

• j. h

U" ,

|| I,-

LC I -"

LD 0

4J CD-

4-) 4-

4.) 4,

N 4-),4J (a~

41- --.
u CII "

I- C

CA

%

u u

to 41

4- CL0

LC) U-

% %
-180-C



'S

4'.

4'..
p~'.
pit
(S.

~0o
*1.o
5'.

II

4J

4-'
0 I-u

'5"-'
0

0, 55"
5" 5"

>1 St 5"
5"..'

1..
4-'
C,

"4

a) -'
-C
~-' 5,'

U,

*0~

5-.

.4.-.
5,

5~
-. 5".

5".'0

'43 5".-.
'5

~. U-

A
"5

p..
A
A

-181-
U.

U.
*4

'.
5"'.

A
'p.'p.

4 .
.i.'~ A...

f >~ -- 5 -. 4,.- ,,. **5* *.4*,.~5"* .5"... .5". Si

-- ~*,



4-)

4)~

V).

44-

4l 
0

C)) C)

C4.

C)~

CDC

%oe

-182-



C0 0 ,.0

,It

r_ CD

to. .

cu 4- EC

,jU,

to a 1

--4-)

4--)

lB. .1-c

(-) (LA-

0 0j4-

4- %v
par-1*



dv~

*~p .J~

A
-I ~

.9 sd*

S.. -

S..

.5

5-..,.

r-.
o -)

A.
ti

'a '-S.

di

VI
S.' *~

.4~)
-9

,p '~..

5.
.9-5
5-'--VI

-c ;~ V.

U*) - S.*5*9*9

S.,.
-S. ~*
5.9%.

9*5%95
-.5. .5.
5.9

E'a
di

VI

'a

In
99

.~. SI.
-. 5,

5,~

.9

A.

5-9

*5-9

-184- S.,
vs

~59- S.

~ 9

.~ -U

59%

*/
9,

*59 59~ ~~S.gy. S. *.*\~''~** '-9 ,.5FS. 55



4JJ
toV

4-.

0

C)C

a-Op

C)C

C).

U'4-
CDo

C)C

-185-

% ?
L, ".r



4% W

C-)

4-4

o 01

o) Cla

to
(U

S_ 4.)--
4-) C

m. Q4--

EU O
U U (1

S_4~

LO L.

EU Cii



to develop in the constant e contours and this is an indication that

the numerical mesh is becoming inadequate. At this stage the hair-

pin vortex legs are rather close to the wall (c.f. Figure 4.8) and

the inviscid velocity distributions are fairly complex (c.f. Figures

5.1 and 5.3). By t = 0.07, the legs of the vortex are moving

fairly close to the wall and the inviscid calculation is nearing the

end of its range of validity, For these reasons, the boundary-layer

calculation was not extended much beyond t = 0.07. However it

may be inferred from the present results that strong boundary-layerS.x

growth is occuring as a consequence of the imposed pressure distri-

butions due to the moving hairpin vortex. This point is illustrated

in Figure 5.15 where the temporal evolution of the displacement

thickness,

" = 2Vf f (1-U)dn (5.59)
0

on the symmetry plane is plotted. The initial hump that begins to

develop and grow in Figure 5.14 is due to the expanding region of

recirculating flow that develops on the symmetry plane at a fairly

early stage in the integrations. The second and third humps that

develop at a later stage are due to the approach of the legs to the

wall and the formation of the secondary spanwise hairpins

respectively.

5.7 Conclusions

1--
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In this chapter, a method has been described for the computa-

tion of the viscous response of a boundary layer to a moving and

developing hairpin vortex in a shear flow. It is evident that the

moving hairpin vortex gives rise to a very complex unsteady pressure

field which in turn drives a complicated unsteady boundary-layer

flow. The present results describe only the development of this

viscous flow on the symmetry plane but it is evident that one con-

sequence of the evolving flow is that strong outward growth of the

boundary-layer flow occurs. It is reasonable to expect that as the

thickening boundary-layer flow penetrates the cross flow in the

inviscid region above the wall, a roll-over into a new secondary

hairpin vortex will occur. This speculation is confirmed by the

experimental observations of Acarlar and Smith (1984, 1987a, 1987b).

* 4
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CHAPTER 6

CONCLUSIONS

In the present study, several aspects of the dynamics of hair-

results of this study generally support the suggestions of the

experimental studies of Acarlar and Smith (1984, 1987a, 1987b) and

the idea that hairpin vortices are a basic building block in turbu-

lent boundary-layer flows. Specific conclusions are as follows:

(1) Hairpin vortices are streak creators.

This is borne out by the simulations described in Chater 4 A

as well as the experiments of Acarlar and Smith.

(2) Hairpin vortices in a shear flow develop secondary hair-

pin vortices which spread in the spanwise direction.

This was suggested by the experiments of Acarlar and Smith and

is confirmed by the calculations in Chapter 4; this is a process of

regeneration wherein a hairpin vortex can multiply itself in the

spanwise direction.

(3) Hairpin vortices induce a pressure gradient which evokes an

eruptive response from the flow near the wall and leads to the

creation of secondary hairpins through a strong viscous-inviscid

interaction.

This phenomenon was clearly shown in the experiments of Acarlar

and Smith in a variety of situations and is supported by the viscous

calculations described in Chapter 5. This process is regenerative *.i

and offers a plausible explanation as to how new vorticity from the

qJb. . . . . . . . .-. 90



region near the wall is continually introduced into the outer layer

of a turbulent boundary layer.

(4) Pairs of hairpin vortices act to reinforce one another

In Chapter 4, it was demonstrated that two hairpin vor-

tices in proximity to one another evolve in such a way that they

intertwine and ultimately give the appearance of a single hairpin

vortex. This phenomenon provides a possible explanation for the

phenomenon of streak reinforcement described by Smith (1984). lo

understand this mechanism, assume that a hairpin vortex moves above

a wall; as it does so, a streak occurs near the wall. After the flow

near the wall is exposed to the pressure gradient induced by the

moving vortex for a sufficient period of time, an eruption occurs and

a secondary hairpin vortex is created in a strong viscous-inviscid

interaction. As the eruption occurs the streak is obliterated near

the point of ejection and at this stage there are two hairpin vor-

tices within the flow. In view of the present results, the secondary

and parent hairpin vortex would be expected to intertwine and rein-

force one another. The next observable phase of the process should

be the appearance of a new streak slightly downstream of the point

of eruption as the pair of hairpins create a streak below them.

The present study is by no means complete and there is a

variety of research directions that could be pursued in the future.

First, the present vortex calculation method is believed to pro-

duce very accurate results for the motion of vortices having small
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cores. However the calculation method is based on Moore's (1972)

model of the vortex core which is probably not general enough to

describe all of the vortex motions which are of interest in connec-

tion with the turbulent boundary layer. The theoretical model

developed by Callegari and Ting (1978) for closed vortex loops is

complex but is believed to be on firmer ground than all prior vortex

calculation methods; this approach needs to be developed and extended

to the types of vortices (of infinite extent) of interest in this

study. In the second place, the present calculations have shown

that hairpin vortices evolve in complex ways which are not easily ,.

predicted a pjori on an intuitive basis; there is therefore a need

to carry out further numerical integrations to develop an improved

understanding of how hairpin vortices react with one another and

also surface topography near walls. The present calculation method

is fairly time consuming however and there is a need to develop new

algorithmic approaches which will permit the accurate calculation

the evolution of interacting vortices in three dimensions more

efficiently. In the third place, there is a need to develop

approaches which will permit the efficient calculation and predic-

tion of physical situations where vortex cores merge locally; in

the present study, it was necessary to terminate the computation of

two interacting hairpin vortices when the two vortex cores touched

(figure 4.25).

A fourth area of needed study is the calculation of the full

• ..
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unsteady three-dimensional boundary layer under a moving hairpin

vortex. In the present study, the boundary-layer calculations

were restricted to the symmetry plane of the moving hairpin vortex;

these calculations do suggest that the boundary-layer flow will A

become eruptive on the symmetry plane. However it is entirely

possible that the boundary-layer flow will evolve toward inter-

action first at locations off the symmetry plane. In order to

completely understand the viscous response at a wall to a moving

hairpin vortex, the full boundary-layer problem must be addressed.

Finally, the eruptive phase of the process, that is observed in

experiments to lead to the creation of secondary hairpins, is of

considerable interest. In order to compute such viscous-inviscid

interactions, it will be necessary to develop new algorithmic

approaches that will permit the calculation of a boundary-layer

flow interacting strongly with an outer inviscid flow. '
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APPENDIX A %b "

In this appendix, it will be demonstrated that the anomolous

behavior of the integrand in Moore's (1972) method which is depicted

in Figure 2.3 for the circular ring may be associated with

inaccuracy in the numerical differentiation. For a circular vortex

ring, the position vector to any point on the ring may be written,

X(s,t) = (Rcosirs , Rsinis , Zr) , -<s<l . (A.1)

where R = R(t), Zr = Z (t) are the dimensionless ring radius and
rr

normal distance from the wall. The first and second derivatives are,

_x = 7r{-RsinTs , Rcos7s 0} (A.2)

a2X ='
2{-Rcoss -Rsins O} (A.3)

3S7

If X denotes the position vector to a point at s = so on the vortex

where the zlf-induced velocity of the vortex is to be evaluated,

then

X0 - X = {R(coss 0 - costs) , R(sins 0 - sinns) ,0 } (A.4)
- .4

Suppose now that as a result of errors incurred in the numerical
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differentiation, errors and 2 occur in the evaluation of X/-s

and a2XIas which have the following simple form,

a - 7 -EI ) {-Rsinrs , Rcosrs, 0} (A.5)

a ST {(n2-E2) {-Rcoss -Rsin7rs , 0} (A.6)

It is readily shown that,

ax (= A 7-)R2(l-COSlrS)

{x -X 2+112}3/
2  {2R2(l-cosWAS)+V2}3/2  (A.7)

0*where AS = S-So, and k is a unit vector in the z direction. Using-.:

equation (2.13), it may be shown that,

T 527 P(S) = R23/s2(- 2 k (A.8)
as x P 2{R2(AS)2(Ir-IE)2+213/2

The Taylor series expansion of cos7As is

COSirAS = 1 - - (rAS) 2 + 1 (irAS) 4 ++o~ ~ rS (A.9)

and assuming that p2<< 2R2AS2 and that E, and £2 are small, it may

shown that the difference I between equations (A.7) and (A.9) is,

1 £2 T
2AS

I ~ i (-3c,+ _- + + (A.10)
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It may be observed from equation (A.10) that if El' 2 = 0,

N. I-O as As-O , (A.ll)

which is the required behavior. On the other hand, if l, 2 0 0,

it may be observed that a large error for small As will occur in the

evaluation of the integrand. Note that for El>O (and E2<O), the

sign of the first term in equation (A.1O) is different from the

second term and the type of behavior depicted in Figure 2.3 will

occur. It should be remarked that this analysis is heuristic and a

complete error analysis was not carried out; the analysis in this

Appendix is only an indication of the potential problems that may

occur with Moore's (1972) method.
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APPENDIX B

In this appendix, the details of the expansion of the integrand

R(s,s ) in equation (2.18) are described. If sO denotes the

location on the vortex where the self-induced velocity is being

evaluated and s denotes any other location on the vortex, a Taylor

series expansion of the position vector about so is,

+ (S-S)2 a2X

X(s,t) = X(s ,t) + (S-S )( ) o  + T (3s-)o

+ 3  a-(3 X +  (B.1)
3! as o Bl

where the subscript o denotes that the derivative is evaluated at

S o letting Xo denote X(s ,t) it follows that

(s-s )2 (S-s )3-)"X0 -X J. -r i,

) 0 X"--- --- X (B .2) ... p

where a prime is used here to denote differentiation with respect to

s. A similar expansion for aX/as is,

x (S'So)2_
ax - x + - (B.3)
as 2! o

A'

and consequently it is easily shown that,

"2-3
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T-s x (XoX) 2 (S-So)2 x +" (S-So) 3Xo x X"' ,
XAfA -0 0 0

(S-So)4 , _,, , _ .,( ) f + 2X0 x "'} + (B.4)
+ 2 {3Xo  Xo" "2 X o 0

In addition,

1X0-X = (S-So)2x' Xo + (-s) 3 Xo X

+-o }V +4X + - '- (8.5) .;
0 0 0s 0) 0

(S-s )4% %m

and the binomial expansion yields,

{Xo X12+02} 3/2  = -3/2 [1 - {(s-s )3Xo 0 X 0:

,.,.,.

s-s (3Xo "' +  .. ],(B•6) '+. ,B%

+ 12 0 0 + .

where,

a = (S-S0 )
2 (X') 2 + )J2 (B.7)

The expansion (B.6) is valid for (s-s ) sufficiently small.
0

An expression for the integrand for small (s-so ) given by0

equation (2.18) may now be obtained using equations (B.4) and (B.6);

the result is,
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.1

R(Ss ) D 03(s-so)' + D4(S-So )
4 + (B.8)

where D3 and D4 are defined by,

D3  a Xo A X0
3a3

S3 )o-S"-S -o)2 B9
04 0

45/2 (X ")(X ° )( + , (9)

a0 0 0 0

( 1 3X -x Xo  Xo  x Xo ..

, * % *

1 -r (X' Xoi(Xo x X,,)(s--0o)2

•'X X
06 0 0 0i.__ _2051 -II--, -

," 4 ' o "" o x j s( 5 5 +)2 .... (B .1O) ."
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